diff --git a/hardware/signal_processing/fft.vhd b/hardware/signal_processing/fft.vhd index 5155676..2207f1f 100644 --- a/hardware/signal_processing/fft.vhd +++ b/hardware/signal_processing/fft.vhd @@ -52,11 +52,9 @@ type fft_state_dec is ( FFT_STATE_IDLE, - FFT_STATE_READ, - FFT_STATE_SCALE, - FFT_STATE_FFT, - FFT_STATE_MAGNITUDE, - FFT_STATE_REVERSE_ORDER, + FFT_STATE_FILL_IP_CORE, + FFT_STATE_GET_IP_CORE, + FFT_STATE_SORT, FFT_STATE_WRITE, FFT_STATE_DONE ); @@ -92,26 +90,46 @@ signal value_data_in_ready : std_logic; signal value_data_in_real : std_logic_vector(31 downto 0); signal value_data_in_real_scaled : std_logic_vector(31 downto 0); + signal value_data_in_real_scaled_fixed : std_logic_vector(31 downto 0); signal value_data_in_imag : std_logic_vector(31 downto 0); signal value_data_out_ready : std_logic; signal value_data_out_real : std_logic_vector(31 downto 0); signal value_data_out_imag : std_logic_vector(31 downto 0); signal value_data_out_mag : std_logic_vector(31 downto 0); + signal value_data_out_mag_float : std_logic_vector(31 downto 0); + signal value_data_out_mag_float_scaled : std_logic_vector(31 downto 0); + type memory_array is array (0 to work.task.STREAM_LEN - 1) of std_logic_vector(31 downto 0); + signal memory : memory_array := (others => (others => '0')); + signal sorted_memory : memory_array := (others => (others => '0')); + signal bitsort_index : integer range 0 to work.task.STREAM_LEN; + signal bitsort_index_temp: integer range 0 to work.task.STREAM_LEN; + signal bitsort_index_out : integer range 0 to work.task.STREAM_LEN; + signal input_vector : std_logic_vector(work.task.STREAM_LEN-1 downto 0); + signal reversed_bits : std_logic_vector(work.task.STREAM_LEN-1 downto 0); + signal a_vec : std_logic_vector(9 downto 0); -- Vector for 1024 range + signal b_vec : std_logic_vector(9 downto 0); -- Reversed vector + signal a : integer range 0 to 1023 := 100; -- Example input integer + signal b : integer range 0 to 1023; -- Reversed integer output signal value_mag_in_ready: std_logic; signal value_mag_out_ready: std_logic; signal fft_state : fft_state_dec := FFT_STATE_IDLE; signal flag_index : bit; + signal write_done_flag : bit; + + --signal memory_scale : work.reg.32.RegArray(0 to 1023); begin + + fft_calc : FFTMAIN port map ( clock => clk, reset => reset, di_en => value_data_in_ready, - di_re => value_data_in_real_scaled, + di_re => value_data_in_real_scaled_fixed, di_im => value_data_in_imag, do_en => value_data_out_ready, do_re => value_data_out_real, @@ -128,120 +146,174 @@ output_valid => value_mag_out_ready, output_magnitude => value_data_out_mag ); + -- current_task_state, task_start, index - task_state_transitions : process ( current_task_state, task_start, index ) is - begin - next_task_state <= current_task_state; - case current_task_state is - when work.task.TASK_IDLE => - if ( task_start = '1' ) then - next_task_state <= work.task.TASK_RUNNING; - end if; - when work.task.TASK_RUNNING => - if ( index = work.task.STREAM_LEN - 1 ) then - next_task_state <= work.task.TASK_DONE; - end if; - when work.task.TASK_DONE => - if ( task_start = '1' ) then - next_task_state <= work.task.TASK_RUNNING; - end if; - end case; - end process task_state_transitions; + task_state_transitions : process ( current_task_state, task_start, index ) is + begin + next_task_state <= current_task_state; + case current_task_state is + when work.task.TASK_IDLE => + if ( task_start = '1' ) then + next_task_state <= work.task.TASK_RUNNING; + end if; + when work.task.TASK_RUNNING => + --index = work.task.STREAM_LEN + if ( write_done_flag = '1') then + next_task_state <= work.task.TASK_DONE; + end if; + when work.task.TASK_DONE => + if ( task_start = '1' ) then + next_task_state <= work.task.TASK_RUNNING; + end if; + end case; + end process task_state_transitions; - sync : process ( clk, reset ) is - begin - if ( reset = '1' ) then - current_task_state <= work.task.TASK_IDLE; - index <= 0; - elsif ( rising_edge( clk ) ) then - current_task_state <= next_task_state; - case next_task_state is - when work.task.TASK_IDLE => - index <= 0; - signal_write <= '0'; - when work.task.TASK_RUNNING => - index <= index + 1; - signal_write <= '1'; - signal_writedata <= ( others => '0' ); - when work.task.TASK_DONE => - index <= 0; - signal_write <= '0'; - end case; - end if; - end process sync; + sync : process ( clk, reset ) is + begin + if ( reset = '1' ) then + current_task_state <= work.task.TASK_IDLE; + index <= 0; + elsif ( rising_edge( clk ) ) then + current_task_state <= next_task_state; + case next_task_state is + when work.task.TASK_IDLE => + index <= 0; + --signal_write <= '0'; + when work.task.TASK_RUNNING => + --index <= index + 1; + + --signal_writedata <= ( others => '0' ); + + if ( flag_index = '1' ) then + index <= index + 1; + end if; + when work.task.TASK_DONE => + index <= 0; + --signal_write <= '0'; + end case; + end if; + end process sync; fft : process (clk, reset) is + variable fifo_in : signed(31 downto 0); + variable fifo_out : signed(31 downto 0); begin -- Bei Reset alle Signale zurücksetzen if ( reset = '1' ) then value_data_in_ready <= '0'; value_data_in_real <= ( others => '0'); value_data_in_imag <= ( others => '0'); - value_data_out_ready <= '0'; - value_data_out_real <= ( others => '0'); - value_data_out_imag <= ( others => '0'); - - -- Für jeden Takt add_state Zustandsmaschine aufrufen. + value_mag_in_ready <= '0'; + write_done_flag <= '0'; + signal_write <= '0'; + signal_read <= '0'; + flag_index <= '0'; + a_vec <= (others => '0'); + b_vec <= (others => '0'); + b <= 0; + a <= 0; + + -- Für jeden Takt fft_state Zustandsmaschine aufrufen. elsif ( rising_edge( clk ) ) then case fft_state is when FFT_STATE_IDLE => + flag_index <= '0'; if ( current_task_state = work.task.TASK_RUNNING ) then - fft_state <= FFT_STATE_READ; + fft_state <= FFT_STATE_FILL_IP_CORE; end if; - when FFT_STATE_READ => - signal_read <= '1'; - value_data_in_real <= signal_readdata; - signal_read <= '0'; - fft_state <= FFT_STATE_SCALE; - - when FFT_STATE_SCALE => - - if value_data_in_real(30 downto 23) = "00000000" then - value_data_in_real_scaled <= value_data_in_real; - else - value_data_in_real_scaled(30 downto 23) <= std_logic_vector(signed(value_data_in_real(30 downto 23)) - 4); - end if; - - fft_state <= FFT_STATE_FFT; - - when FFT_STATE_FFT => + when FFT_STATE_FILL_IP_CORE => value_data_in_ready <= '1'; + signal_read <= '1'; - if ( value_data_out_ready = '1' ) then - fft_state <= FFT_STATE_MAGNITUDE; - end if; + value_data_in_real <= signal_readdata; - when FFT_STATE_MAGNITUDE => + if value_data_in_real(30 downto 23) = "00000000" then + value_data_in_real_scaled_fixed <= to_fixed(value_data_in_real); + else + fifo_in(31) := value_data_in_real(31); + fifo_in(30 downto 23) := signed(value_data_in_real(30 downto 23)) - 4; + fifo_in(22 downto 0) := signed(value_data_in_real(22 downto 0)); + value_data_in_real_scaled_fixed <= to_fixed(std_logic_vector(fifo_in)); - value_mag_in_ready <= '1'; - - if (value_mag_out_ready = '1') then - fft_state <= FFT_STATE_WRITE; end if; - when FFT_STATE_REVERSE_ORDER => + if (value_data_out_ready = '1') then + fft_state <= FFT_STATE_GET_IP_CORE; + end if; - + when FFT_STATE_GET_IP_CORE => + + signal_read <= '0'; + + value_mag_in_ready <= '1'; + + value_data_out_mag_float <= to_float(value_data_out_mag); + + value_data_out_mag_float_scaled(31) <= value_data_out_mag_float(31); + value_data_out_mag_float_scaled(22 downto 0) <= std_logic_vector(signed(value_data_out_mag_float(22 downto 0))); + if value_data_out_mag_float(30 downto 23) = "00000000" then + value_data_out_mag_float_scaled(30 downto 23) <= std_logic_vector(signed(value_data_out_mag_float(30 downto 23)) + 4); + else + value_data_out_mag_float_scaled(30 downto 23) <= std_logic_vector(signed(value_data_out_mag_float(30 downto 23)) + 5); + end if; + + + memory(index) <= value_data_out_mag_float_scaled; + + if (value_mag_out_ready = '1') then + flag_index <= '1'; + end if; + + if ( index = work.task.STREAM_LEN - 1 ) then + --value_data_in_ready <= '0'; + flag_index <= '0'; + bitsort_index <= 0; + bitsort_index_temp <= 0; + bitsort_index_out <= 0; + fft_state <= FFT_STATE_SORT; + end if; + + when FFT_STATE_SORT => + + a_vec <= std_logic_vector(to_unsigned(bitsort_index, a_vec'length)); + + for i in 0 to 9 loop + b_vec(i) <= a_vec(9 - i); + end loop; + + b <= to_integer(unsigned(b_vec)); + + sorted_memory(b) <= memory(bitsort_index); + bitsort_index <= bitsort_index + 1; + + if (bitsort_index = work.task.STREAM_LEN - 1) then + bitsort_index <= 0; + fft_state <= FFT_STATE_WRITE; + end if; when FFT_STATE_WRITE => - + signal_write <= '1'; - signal_writedata <= value_data_out_mag; + signal_writedata <= sorted_memory(bitsort_index); + bitsort_index <= bitsort_index + 1; + if (bitsort_index = work.task.STREAM_LEN - 1) then + fft_state <= FFT_STATE_DONE; + write_done_flag <= '1'; + end if; - fft_state <= FFT_STATE_DONE; when FFT_STATE_DONE => - signal_read <= '0'; - signal_write <= '0'; - value_data_in_ready <= '0'; - value_data_out_ready <= '0'; - value_mag_in_ready <= '0'; - value_mag_out_ready <= '0'; - fft_state <= FFT_STATE_IDLE; + signal_write <= '0'; + flag_index <= '0'; + signal_read <= '0'; + value_data_in_ready <= '0'; + value_mag_in_ready <= '0'; + + end case; end if; diff --git a/tests/hardware/task_fft/test_task_fft.vhd b/tests/hardware/task_fft/test_task_fft.vhd index c9d570b..cd47c1a 100644 --- a/tests/hardware/task_fft/test_task_fft.vhd +++ b/tests/hardware/task_fft/test_task_fft.vhd @@ -219,9 +219,8 @@ begin test_execute( clk => clk, req => req, rsp => rsp, write => signal_write, writedata => signal_writedata ); - wait until falling_edge( signal_write ); - + wait for 200 ns; std.textio.write( std.textio.OUTPUT, "Finished test_task_fft" & LF ); std.textio.write( std.textio.OUTPUT, "--------------------------------------------------------------------------------" & LF );