library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.reg32.all; use work.task.all; entity crc is port ( clk : in std_logic; reset : in std_logic; task_start : in std_logic; task_state : out work.task.State; signal_read : out std_logic; signal_readdata : in std_logic_vector( 31 downto 0 ); signal_write : out std_logic; signal_writedata : out std_logic_vector( 31 downto 0 ) ); end entity crc; architecture rtl of crc is signal current_task_state : work.task.State; signal next_task_state : work.task.State; signal index : integer range 0 to work.task.STREAM_LEN; begin task_state_transitions : process ( current_task_state, task_start, index ) is begin next_task_state <= current_task_state; case current_task_state is when work.task.TASK_IDLE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; when work.task.TASK_RUNNING => if ( index = work.task.STREAM_LEN - 1 ) then next_task_state <= work.task.TASK_DONE; end if; when work.task.TASK_DONE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; end case; end process task_state_transitions; sync : process ( clk, reset ) is begin if ( reset = '1' ) then current_task_state <= work.task.TASK_IDLE; index <= 0; elsif ( rising_edge( clk ) ) then current_task_state <= next_task_state; case next_task_state is when work.task.TASK_IDLE => index <= 0; signal_write <= '0'; when work.task.TASK_RUNNING => index <= index + 1; signal_write <= '1'; signal_writedata <= ( others => '0' ); when work.task.TASK_DONE => index <= 0; signal_write <= '0'; end case; end if; end process sync; task_state <= current_task_state; end architecture rtl;