library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.reg32.all; use work.task.all; entity add is port ( clk : in std_logic; reset : in std_logic; task_start : in std_logic; task_state : out work.task.State; signal_a_read : out std_logic; signal_a_readdata : in std_logic_vector( 31 downto 0 ); signal_b_read : out std_logic; signal_b_readdata : in std_logic_vector( 31 downto 0 ); signal_write : out std_logic; signal_writedata : out std_logic_vector( 31 downto 0 ) ); end entity add; architecture rtl of add is signal current_task_state : work.task.State; signal next_task_state : work.task.State; signal index : integer range 0 to work.task.STREAM_LEN; signal fpuDone : std_logic; signal START : std_logic; type AddState is ( ADD_IDLE, ADD_SET_SIGNALS, ADD_RUNNING, ADD_DONE ); signal current_add_state : AddState; signal next_add_state : AddState; begin f1:ENTITY work.float_add PORT MAP(CLK => CLK, RESET => RESET, START => START, A => signal_a_readdata, B => signal_b_readdata, done => fpuDone, sum => signal_writedata); task_state_transitions : process ( current_task_state, task_start, index ) is begin next_task_state <= current_task_state; case current_task_state is when work.task.TASK_IDLE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; when work.task.TASK_RUNNING => if ( index = work.task.STREAM_LEN - 1 ) then next_task_state <= work.task.TASK_DONE; end if; when work.task.TASK_DONE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; end case; end process task_state_transitions; sync : process ( clk, reset ) is begin if ( reset = '1' ) then current_task_state <= work.task.TASK_IDLE; index <= 0; elsif ( rising_edge( clk ) ) then current_task_state <= next_task_state; case next_task_state is when work.task.TASK_IDLE => index <= 0; when work.task.TASK_RUNNING => if(current_add_state = ADD_DONE) then index <= index + 1; end if; when work.task.TASK_DONE => index <= 0; end case; end if; end process sync; task_state <= current_task_state; add_state_transitions : process ( current_add_state, fpuDone, current_task_state) begin next_add_state <= current_add_state; case current_add_state is when ADD_IDLE => if(current_task_state = work.task.TASK_RUNNING) then next_add_state <= ADD_SET_SIGNALS; end if; when ADD_SET_SIGNALS => next_add_state <= ADD_RUNNING; when ADD_RUNNING => if(fpuDone = '1') then next_add_state <= ADD_DONE; end if; when ADD_DONE => next_add_state <= ADD_IDLE; end case; end process add_state_transitions; add : process (clk, reset) is begin if ( reset = '1' ) then current_add_state <= ADD_IDLE; elsif ( rising_edge( clk ) ) then current_add_state <= next_add_state; case next_add_state is when ADD_IDLE => START <= '0'; signal_write <= '0'; when ADD_SET_SIGNALS => signal_a_read <= '1'; signal_b_read <= '1'; when ADD_RUNNING => signal_a_read <= '0'; signal_b_read <= '0'; START <= '1'; when ADD_DONE => START <= '0'; signal_write <= '1'; end case; end if; end process add; end architecture rtl;