= 2025-11-27 15:28:29 +01:00
commit 4e2dd7b4d4
4 changed files with 42 additions and 11 deletions

View File

@ -1,9 +1,6 @@
#include <stdlib.h>
#include <string.h>
#include "matrix.h"
#include <stdbool.h>
// TODO Matrix-Funktionen implementieren
Matrix createMatrix(size_t rows, size_t cols)
{
@ -17,7 +14,7 @@ Matrix createMatrix(size_t rows, size_t cols)
return m;
}
// Single allocation for entire matrix
//Allocate Matrix buffer
m.buffer = malloc(rows * cols * sizeof(MatrixType));
if(!m.buffer){
@ -25,7 +22,7 @@ Matrix createMatrix(size_t rows, size_t cols)
return m;
}
// Initialize (optional)
//Initialize matrix with default value
for(unsigned int i = 0; i < rows * cols; i++){
m.buffer[i] = UNDEFINED_MATRIX_VALUE;
}
@ -75,7 +72,7 @@ MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int co
Matrix add(const Matrix matrix1, const Matrix matrix2)
{
bool doBroadcast = false;
unsigned int doBroadcast = 0;
Matrix larger, smaller;
if(matrix1.rows == matrix2.rows && matrix1.cols == matrix2.cols){
@ -86,13 +83,13 @@ Matrix add(const Matrix matrix1, const Matrix matrix2)
{
larger = matrix1;
smaller = matrix2;
doBroadcast = true;
doBroadcast = 1;
}
else if (matrix1.rows == matrix2.rows && matrix1.cols == 1)
{
larger = matrix2;
smaller = matrix1;
doBroadcast = true;
doBroadcast = 1;
}
else{
Matrix m = {NULL, 0, 0};
@ -101,6 +98,7 @@ Matrix add(const Matrix matrix1, const Matrix matrix2)
Matrix outputMatrix = createMatrix(larger.rows, larger.cols);
if(doBroadcast){
//Broadcasting
for(int i = 0; i < outputMatrix.rows; i++){
MatrixType broadcastValue = smaller.buffer[i];
for(int j = 0; j < outputMatrix.cols; j++){
@ -108,6 +106,7 @@ Matrix add(const Matrix matrix1, const Matrix matrix2)
}
}
} else{
//Classic execution
for (int i = 0; i < matrix1.rows;i++) {
for (int j = 0; j < matrix1.cols; j++) {
// how this should work in normal Matrix version:

View File

@ -164,7 +164,6 @@ NeuralNetwork loadModel(const char *path)
assignActivations(model);
}
return model;
}

1
neuralNetwork.sh Normal file
View File

@ -0,0 +1 @@
make clean && make && make neuralNetworkTests

View File

@ -8,9 +8,41 @@
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{
// TODO
}
FILE *file = fopen(path, "wb");
if(file != NULL){
const char *fileTag = "__info2_neural_network_file_format__";
//Write header
fwrite(fileTag, sizeof(char), strlen(fileTag), file);
//Write the input dimension of the first layer
if(nn.numberOfLayers > 0){
fwrite(&nn.layers[0].weights.cols, sizeof(int), 1, file);
}
//Write each layer into file
for(int i = 0; i < nn.numberOfLayers; i++){
//Write output dimension
fwrite(&nn.layers[i].weights.rows, sizeof(int), 1, file);
//Write weight data
int weightSize = nn.layers[i].weights.rows * nn.layers[i].weights.cols;
fwrite(nn.layers[i].weights.buffer, sizeof(MatrixType), weightSize, file);
//Write bias data
int biasSize = nn.layers[i].biases.rows * nn.layers[i].biases.cols;
fwrite(nn.layers[i].biases.buffer, sizeof(MatrixType), biasSize, file);
}
//EOF Terminator
int zero = 0;
fwrite(&zero, sizeof(int), 1, file);
fclose(file);
}
}
void test_loadModelReturnsCorrectNumberOfLayers(void)
{
const char *path = "some__nn_test_file.info2";