generated from freudenreichan/info2Praktikum-NeuronalesNetz
149 lines
4.6 KiB
C
149 lines
4.6 KiB
C
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "matrix.h"
|
|
|
|
Matrix createMatrix(size_t rows, size_t cols)
|
|
{
|
|
Matrix m;
|
|
m.rows = rows;
|
|
m.cols = cols;
|
|
m.buffer = NULL;
|
|
|
|
if(rows == 0 || cols == 0){
|
|
m.rows = m.cols = 0;
|
|
return m;
|
|
}
|
|
|
|
//Allocate Matrix buffer
|
|
m.buffer = malloc(rows * cols * sizeof(MatrixType));
|
|
|
|
if(!m.buffer){
|
|
m.rows = m.cols = 0;
|
|
return m;
|
|
}
|
|
|
|
//Initialize matrix with default value
|
|
for(unsigned int i = 0; i < rows * cols; i++){
|
|
m.buffer[i] = UNDEFINED_MATRIX_VALUE;
|
|
}
|
|
|
|
return m;
|
|
}
|
|
|
|
|
|
void clearMatrix(Matrix* matrix)
|
|
{
|
|
for (int i = 0; i < matrix->rows; i++) {
|
|
for (int j = 0; j < matrix->cols;j++) {
|
|
// Normally one would expect to work matrices like this, but it is supposed to be the other way around.
|
|
// matrix->buffer[i + matrix->rows * j] = UNDEFINED_MATRIX_VALUE;
|
|
matrix->buffer[j + matrix->cols * i] = UNDEFINED_MATRIX_VALUE;
|
|
}
|
|
}
|
|
free(matrix->buffer);
|
|
matrix->rows = 0;
|
|
matrix->cols = 0;
|
|
matrix->buffer = NULL;
|
|
}
|
|
|
|
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
|
{
|
|
//checks, if the given incies are allowed
|
|
if((rowIdx) < matrix.rows && (colIdx) < matrix.cols) {
|
|
// Normally one would expect to work matrices like this, but it is supposed to be the other way around.
|
|
// matrix.buffer[rowIdx + matrix.rows*(colIdx)] = value;
|
|
matrix.buffer[colIdx + matrix.cols * rowIdx] = value;
|
|
}
|
|
}
|
|
|
|
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
|
{
|
|
//checks, if the given indices are allowed
|
|
if((rowIdx) < matrix.rows && (colIdx) < matrix.cols) {
|
|
MatrixType returnVal;
|
|
// Normally one would expect to work matrices like this, but it is supposed to be the other way around.
|
|
// returnVal = matrix.buffer[rowIdx + matrix.rows*(colIdx)];
|
|
returnVal = matrix.buffer[colIdx + rowIdx * matrix.cols];
|
|
return returnVal;
|
|
}
|
|
else return 0;
|
|
}
|
|
|
|
Matrix add(const Matrix matrix1, const Matrix matrix2)
|
|
{
|
|
|
|
unsigned int doBroadcast = 0;
|
|
Matrix larger, smaller;
|
|
|
|
if(matrix1.rows == matrix2.rows && matrix1.cols == matrix2.cols){
|
|
larger = matrix1;
|
|
smaller = matrix2;
|
|
}
|
|
else if (matrix1.rows == matrix2.rows && matrix2.cols == 1)
|
|
{
|
|
larger = matrix1;
|
|
smaller = matrix2;
|
|
doBroadcast = 1;
|
|
}
|
|
else if (matrix1.rows == matrix2.rows && matrix1.cols == 1)
|
|
{
|
|
larger = matrix2;
|
|
smaller = matrix1;
|
|
doBroadcast = 1;
|
|
}
|
|
else{
|
|
Matrix m = {NULL, 0, 0};
|
|
return m;
|
|
}
|
|
|
|
Matrix outputMatrix = createMatrix(larger.rows, larger.cols);
|
|
if(doBroadcast){
|
|
//Broadcasting
|
|
for(int i = 0; i < outputMatrix.rows; i++){
|
|
MatrixType broadcastValue = smaller.buffer[i];
|
|
for(int j = 0; j < outputMatrix.cols; j++){
|
|
outputMatrix.buffer[i * outputMatrix.cols + j] = larger.buffer[i * larger.cols + j] + broadcastValue;
|
|
}
|
|
}
|
|
} else{
|
|
//Classic execution
|
|
for (int i = 0; i < matrix1.rows;i++) {
|
|
for (int j = 0; j < matrix1.cols; j++) {
|
|
// how this should work in normal Matrix version:
|
|
// outputmatrix.buffer[i][j] = matrix1.buffer[i][j] + matrix2.buffer[i][j];
|
|
outputMatrix.buffer[i * outputMatrix.cols + j] = matrix1.buffer[i * matrix1.cols + j] + matrix2.buffer[i * matrix2.cols + j];
|
|
}
|
|
}
|
|
}
|
|
return outputMatrix;
|
|
|
|
|
|
}
|
|
|
|
|
|
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
|
|
{
|
|
if(matrix1.cols != matrix2.rows){
|
|
Matrix m = {NULL, 0, 0};
|
|
return m;
|
|
}
|
|
|
|
Matrix outputMatrix = createMatrix(matrix1.rows, matrix2.cols);
|
|
if(!outputMatrix.buffer){
|
|
Matrix m = {NULL, 0, 0};
|
|
return m;
|
|
}
|
|
|
|
//Matrix outputMatrix = createMatrix(matrix2.cols, matrix1.rows);
|
|
for(int i = 0; i < matrix1.rows; i++) {
|
|
for (int j = 0; j < matrix2.cols; j++) {
|
|
for (int k = 0; k < matrix1.cols; k++) {
|
|
// how this should work in normal Matrix version:
|
|
// outputMatrix.buffer[i][j] = matrix1.buffer[i][k] * matrix2.buffer[k][j];
|
|
//outputMatrix.buffer[i + outputMatrix.rows * j] += matrix1.buffer[i + matrix1.rows * k] * matrix2.buffer[k + matrix2.rows * j];
|
|
outputMatrix.buffer[i * outputMatrix.cols + j] += matrix1.buffer[i * matrix1.cols + k] * matrix2.buffer[j + matrix2.cols * k];
|
|
}
|
|
}
|
|
}
|
|
return outputMatrix;
|
|
} |