This commit is contained in:
Nicolas Reckert 2025-12-15 13:18:13 +01:00
parent d0f2ee5760
commit 5ed4a367c8
6 changed files with 225 additions and 39 deletions

View File

@ -1,36 +1,133 @@
#include <stdlib.h>
#include <string.h> #include <string.h>
#include "stack.h"
#include "bintree.h" #include "bintree.h"
#include "stack.h"
//TODO: binären Suchbaum implementieren /* Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
/* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv), if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added). */
* `clearTree`: gibt den gesamten Baum frei (rekursiv),
* `treeSize`: zählt die Knoten im Baum (rekursiv),
* `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */
// Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate) TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate)
{ {
if (compareFct == NULL || data == NULL || dataSize == 0)
return root; // invalid input: do nothing
if (root == NULL)
{
TreeNode *node = (TreeNode *)malloc(sizeof(TreeNode));
if (node == NULL)
return NULL; // allocation failed
node->data = malloc(dataSize);
if (node->data == NULL)
{
free(node);
return NULL;
}
memcpy(node->data, data, dataSize);
node->left = NULL;
node->right = NULL;
if (isDuplicate != NULL)
*isDuplicate = 0;
return node;
}
int cmp = compareFct(data, root->data);
if (cmp < 0)
{
root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate);
}
else if (cmp > 0)
{
root->right = addToTree(root->right, data, dataSize, compareFct, isDuplicate);
}
else // cmp == 0 -> duplicate
{
if (isDuplicate != NULL)
{
*isDuplicate = 1;
// ignore duplicate insertion
}
else
{
// duplicates allowed: insert to right subtree for stability
root->right = addToTree(root->right, data, dataSize, compareFct, isDuplicate);
}
}
return root;
} }
// Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction. /* Iterates over the tree given by root in-order (ascending order).
// Use your implementation of a stack to organize the iterator. Push the root node and all left nodes first. On returning the next element, Follows the usage of strtok: If root != NULL then create/reset iterator for that tree.
// push the top node and push all its left nodes. If root == NULL, continue iteration from last position.
Uses stack to manage traversal state. */
void *nextTreeData(TreeNode *root) void *nextTreeData(TreeNode *root)
{ {
// static iterator state
static StackNode *iterStack = NULL;
// initialize iterator for a new tree
if (root != NULL)
{
// clear any previous iterator state
clearStack(iterStack);
iterStack = NULL;
// push root and all its left descendants
TreeNode *cur = root;
while (cur != NULL)
{
iterStack = push(iterStack, cur);
cur = cur->left;
}
}
else
{
// if user asks to continue but iterator not initialized, nothing to return
if (iterStack == NULL)
return NULL;
}
// get next node
if (iterStack == NULL)
return NULL;
// pop the top node
TreeNode *node = (TreeNode *)top(iterStack);
iterStack = pop(iterStack);
// after popping node, push its right child and all left descendants of that right child
TreeNode *r = node->right;
while (r != NULL)
{
iterStack = push(iterStack, r);
r = r->left;
}
return node->data;
} }
// Releases all memory resources (including data copies). /* Releases all memory resources (including data copies). */
void clearTree(TreeNode *root) void clearTree(TreeNode *root)
{ {
if (root == NULL)
return;
if (root->left != NULL)
clearTree(root->left);
if (root->right != NULL)
clearTree(root->right);
free(root->data);
root->data = NULL;
free(root);
} }
// Returns the number of entries in the tree given by root. /* Returns the number of entries in the tree given by root. */
unsigned int treeSize(const TreeNode *root) unsigned int treeSize(const TreeNode *root)
{ {
if (root == NULL)
} return 0;
return 1 + treeSize(root->left) + treeSize(root->right);
}

View File

@ -1 +1,2 @@
Test;4988
player1;3999 player1;3999

View File

@ -17,7 +17,7 @@ doble_initial:
doble : main.o $(program_obj_files) doble : main.o $(program_obj_files)
$(CC) $(FLAGS) $^ -o doble $(CC) $(FLAGS) $^ -o doble
$(program_obj_filesobj_files): %.o: %.c $(program_obj_files): %.o: %.c
$(CC) -c $(FLAGS) $^ -o $@ $(CC) -c $(FLAGS) $^ -o $@
# -------------------------- # --------------------------

View File

@ -5,22 +5,92 @@
#include "numbers.h" #include "numbers.h"
#include "bintree.h" #include "bintree.h"
//TODO: getDuplicate und createNumbers implementieren // --- Hilfsfunktion: Vergleich von unsigned int ------------------
/* * * Erzeugen eines Arrays mit der vom Nutzer eingegebenen Anzahl an Zufallszahlen. static int compareUInt(const void *a, const void *b)
* Sicherstellen, dass beim Befüllen keine Duplikate entstehen.
* Duplizieren eines zufälligen Eintrags im Array.
* in `getDuplicate()`: Sortieren des Arrays und Erkennen der doppelten Zahl durch Vergleich benachbarter Elemente. */
// Returns len random numbers between 1 and 2x len in random order which are all different, except for two entries.
// Returns NULL on errors. Use your implementation of the binary search tree to check for possible duplicates while
// creating random numbers.
unsigned int *createNumbers(unsigned int len)
{ {
unsigned int ua = *(const unsigned int *)a;
unsigned int ub = *(const unsigned int *)b;
if (ua < ub) return -1;
if (ua > ub) return 1;
return 0;
} }
// Returns only the only number in numbers which is present twice. Returns zero on errors. // Returns len random numbers between 1 and 2x len in random order which are all different,
// except for two entries. Uses the binary search tree to avoid duplicates.
unsigned int *createNumbers(unsigned int len)
{
if (len < 2)
return NULL;
unsigned int *arr = malloc(sizeof(unsigned int) * len);
if (!arr)
return NULL;
srand((unsigned int)time(NULL));
TreeNode *root = NULL;
unsigned int count = 0;
while (count < len - 1) // generate len-1 UNIQUE numbers
{
unsigned int val = (rand() % (2 * len)) + 1;
int isDup = 0;
root = addToTree(root, &val, sizeof(unsigned int), compareUInt, &isDup);
if (!isDup)
{
arr[count++] = val;
}
}
// pick a random existing value to duplicate
unsigned int duplicateIndex = rand() % (len - 1);
arr[len - 1] = arr[duplicateIndex];
clearTree(root);
return arr;
}
// Returns the only number in the array that occurs twice.
unsigned int getDuplicate(const unsigned int numbers[], unsigned int len) unsigned int getDuplicate(const unsigned int numbers[], unsigned int len)
{ {
if (!numbers || len < 2)
return 0;
} // copy array
unsigned int *copy = malloc(sizeof(unsigned int) * len);
if (!copy)
return 0;
memcpy(copy, numbers, sizeof(unsigned int) * len);
// sort
for (unsigned int i = 0; i < len - 1; i++)
{
for (unsigned int j = i + 1; j < len; j++)
{
if (copy[j] < copy[i])
{
unsigned int t = copy[i];
copy[i] = copy[j];
copy[j] = t;
}
}
}
// find adjacent duplicate
unsigned int duplicate = 0;
for (unsigned int i = 0; i < len - 1; i++)
{
if (copy[i] == copy[i + 1])
{
duplicate = copy[i];
break;
}
}
free(copy);
return duplicate;
}

View File

@ -1,33 +1,45 @@
#include <stdlib.h> #include <stdlib.h>
#include "stack.h" #include "stack.h"
//TODO: grundlegende Stackfunktionen implementieren:
/* * `push`: legt ein Element oben auf den Stack,
* `pop`: entfernt das oberste Element,
* `top`: liefert das oberste Element zurück,
* `clearStack`: gibt den gesamten Speicher frei. */
// Pushes data as pointer onto the stack. // Pushes data as pointer onto the stack.
StackNode *push(StackNode *stack, void *data) StackNode *push(StackNode *stack, void *data)
{ {
StackNode *newNode = (StackNode *)malloc(sizeof(StackNode));
if (newNode == NULL)
return stack; // allocation failed: return unchanged stack
newNode->data = data;
newNode->next = stack;
return newNode;
} }
// Deletes the top element of the stack (latest added element) and releases its memory. (Pointer to data has to be // Deletes the top element of the stack (latest added element) and releases its memory. (Pointer to data has to be
// freed by caller.) // freed by caller.)
StackNode *pop(StackNode *stack) StackNode *pop(StackNode *stack)
{ {
if (stack == NULL)
return NULL;
StackNode *next = stack->next;
free(stack);
return next;
} }
// Returns the data of the top element. // Returns the data of the top element.
void *top(StackNode *stack) void *top(StackNode *stack)
{ {
if (stack == NULL)
return NULL;
return stack->data;
} }
// Clears stack and releases all memory. // Clears stack and releases all memory.
void clearStack(StackNode *stack) void clearStack(StackNode *stack)
{ {
while (stack != NULL)
} {
StackNode *next = stack->next;
free(stack);
stack = next;
}
}

View File

@ -8,6 +8,12 @@ The latest element is taken from the stack. */
#include <stdlib.h> #include <stdlib.h>
//TODO: passenden Datentyp als struct anlegen //TODO: passenden Datentyp als struct anlegen
struct StackNode {
void *data;
struct StackNode *next;
};
typedef struct StackNode StackNode;
// Pushes data as pointer onto the stack. // Pushes data as pointer onto the stack.
StackNode *push(StackNode *stack, void *data); StackNode *push(StackNode *stack, void *data);
@ -22,4 +28,4 @@ void *top(StackNode *stack);
// Clears stack and releases all memory. // Clears stack and releases all memory.
void clearStack(StackNode *stack); void clearStack(StackNode *stack);
#endif #endif