#include #include #include #include "matrix.h" // TODO Matrix-Funktionen implementieren Matrix createMatrix(unsigned int rows, unsigned int cols) { if (rows == 0 || cols == 0) { Matrix matrixNull; matrixNull.rows = 0; matrixNull.cols = 0; matrixNull.buffer = NULL; return matrixNull; } Matrix matrix; matrix.rows = rows; matrix.cols = cols; matrix.buffer = calloc(rows * cols, sizeof(MatrixType)); if (matrix.buffer == 0) { perror("Das erstellen der Matrix ist fehlgeschlagen"); clearMatrix(&matrix); return matrix; } return matrix; } void clearMatrix(Matrix *matrix) { matrix->buffer = NULL; matrix->rows = 0; matrix->cols = 0; free(matrix->buffer); } void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx) { if (rowIdx >= matrix.rows || colIdx >= matrix.cols) { return; } size_t index = rowIdx * matrix.cols + colIdx; // spingt die zeilen * Anzahl der spalten (Eine Zeile = Anzahl der Spalten lang); + springt noch anzahl an spalten bis zur irhctigen Position matrix.buffer[index] = value; } MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx) { if (rowIdx > matrix.rows - 1 || colIdx > matrix.cols - 1) { return 0; } size_t index = rowIdx * matrix.cols + colIdx; return matrix.buffer[index]; } Matrix add(const Matrix matrix1, const Matrix matrix2) { if (matrix1.rows == 0 || matrix1.cols == 0 || matrix2.rows == 0 || matrix2.cols == 0) { perror("Die Matrizen sind leer"); return createMatrix(0, 0); } if (matrix1.rows * matrix1.cols < matrix2.rows * matrix2.cols) { return add(matrix2, matrix1); } if ((matrix1.rows != matrix2.rows && matrix2.rows != 1) || (matrix1.cols != matrix2.cols && matrix2.cols != 1)) { perror("Die Matrizen koennen nicht addiert werden"); return createMatrix(0, 0); } Matrix matrix2Neu = matrix2; int freigabe = 0; if (matrix1.cols != matrix2.cols) { // broadcasting matrix2Neu = createMatrix(matrix1.rows, matrix1.cols); freigabe = 1; for (unsigned rowId = 0; rowId < matrix1.rows; rowId++) { for (unsigned colId = 0; colId < matrix1.cols; colId++) { setMatrixAt(matrix2.buffer[rowId], matrix2Neu, rowId, colId); } } } else if (matrix1.rows != matrix2.rows) { // broadcasting matrix2Neu = createMatrix(matrix1.rows, matrix1.cols); freigabe = 1; for (unsigned colId = 0; colId < matrix1.cols; colId++) { for (unsigned rowId = 0; rowId < matrix1.rows; rowId++) { setMatrixAt(matrix2.buffer[colId], matrix2Neu, rowId, colId); } } } Matrix matrix = createMatrix(matrix1.rows, matrix1.cols); for (int index = 0; index < matrix1.rows * matrix1.cols; index++) { matrix.buffer[index] = matrix1.buffer[index] + matrix2Neu.buffer[index]; } if (freigabe == 1) free(matrix2Neu.buffer); return matrix; } Matrix multiply(const Matrix matrix1, const Matrix matrix2) { if (matrix1.cols != matrix2.rows) { perror("Die Matritzen koennen nicht multipliziert werden"); return createMatrix(0, 0); ; } if (matrix1.rows == 0 || matrix1.cols == 0 || matrix2.rows == 0 || matrix2.cols == 0) { perror("Die Matrizen sind leer"); return createMatrix(0, 0); } Matrix matrix = createMatrix(matrix1.rows, matrix2.cols); int index = 0; float wert = 0.0; for (int i = 0; i < matrix1.rows * matrix1.cols; i += matrix1.cols) { for (int j = 0; j < matrix2.cols; j++) { for (int k = 0; k < matrix1.cols; k++) { wert += matrix1.buffer[i + k] * matrix2.buffer[j + k * matrix2.cols]; } matrix.buffer[index] = wert; wert = 0.0; index++; } } return matrix; }