generated from freudenreichan/info2Praktikum-NeuronalesNetz
159 lines
4.1 KiB
C
159 lines
4.1 KiB
C
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
#include "matrix.h"
|
|
|
|
// TODO Matrix-Funktionen implementieren
|
|
|
|
Matrix createMatrix(unsigned int rows, unsigned int cols)
|
|
{
|
|
|
|
if (rows == 0 || cols == 0)
|
|
{
|
|
Matrix matrixNull;
|
|
matrixNull.rows = 0;
|
|
matrixNull.cols = 0;
|
|
matrixNull.buffer = NULL;
|
|
return matrixNull;
|
|
}
|
|
|
|
Matrix matrix;
|
|
matrix.rows = rows;
|
|
matrix.cols = cols;
|
|
matrix.buffer = calloc(rows * cols, sizeof(MatrixType));
|
|
|
|
if (matrix.buffer == 0)
|
|
{
|
|
perror("Das erstellen der Matrix ist fehlgeschlagen");
|
|
clearMatrix(&matrix);
|
|
return matrix;
|
|
}
|
|
|
|
return matrix;
|
|
}
|
|
|
|
void clearMatrix(Matrix *matrix)
|
|
{
|
|
matrix->buffer = NULL;
|
|
matrix->rows = 0;
|
|
matrix->cols = 0;
|
|
free(matrix->buffer);
|
|
}
|
|
|
|
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
|
{
|
|
if (rowIdx >= matrix.rows || colIdx >= matrix.cols)
|
|
{
|
|
return;
|
|
}
|
|
size_t index = rowIdx * matrix.cols + colIdx; // spingt die zeilen * Anzahl der spalten (Eine Zeile = Anzahl der Spalten lang); + springt noch anzahl an spalten bis zur irhctigen Position
|
|
matrix.buffer[index] = value;
|
|
}
|
|
|
|
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
|
|
{
|
|
if (rowIdx > matrix.rows - 1 || colIdx > matrix.cols - 1)
|
|
{
|
|
return 0;
|
|
}
|
|
size_t index = rowIdx * matrix.cols + colIdx;
|
|
return matrix.buffer[index];
|
|
}
|
|
|
|
Matrix add(const Matrix matrix1, const Matrix matrix2)
|
|
{
|
|
|
|
if (matrix1.rows == 0 || matrix1.cols == 0 || matrix2.rows == 0 || matrix2.cols == 0)
|
|
{
|
|
perror("Die Matrizen sind leer");
|
|
return createMatrix(0, 0);
|
|
}
|
|
|
|
if (matrix1.rows * matrix1.cols < matrix2.rows * matrix2.cols)
|
|
{
|
|
return add(matrix2, matrix1);
|
|
}
|
|
|
|
if ((matrix1.rows != matrix2.rows && matrix2.rows != 1) ||
|
|
(matrix1.cols != matrix2.cols && matrix2.cols != 1))
|
|
{
|
|
perror("Die Matrizen koennen nicht addiert werden");
|
|
return createMatrix(0, 0);
|
|
}
|
|
|
|
Matrix matrix2Neu = matrix2;
|
|
int freigabe = 0;
|
|
|
|
if (matrix1.cols != matrix2.cols)
|
|
{ // broadcasting
|
|
matrix2Neu = createMatrix(matrix1.rows, matrix1.cols);
|
|
freigabe = 1;
|
|
for (unsigned rowId = 0; rowId < matrix1.rows; rowId++)
|
|
{
|
|
for (unsigned colId = 0; colId < matrix1.cols; colId++)
|
|
{
|
|
setMatrixAt(matrix2.buffer[rowId], matrix2Neu, rowId, colId);
|
|
}
|
|
}
|
|
}
|
|
else if (matrix1.rows != matrix2.rows)
|
|
{ // broadcasting
|
|
matrix2Neu = createMatrix(matrix1.rows, matrix1.cols);
|
|
freigabe = 1;
|
|
for (unsigned colId = 0; colId < matrix1.cols; colId++)
|
|
{
|
|
for (unsigned rowId = 0; rowId < matrix1.rows; rowId++)
|
|
{
|
|
setMatrixAt(matrix2.buffer[colId], matrix2Neu, rowId, colId);
|
|
}
|
|
}
|
|
}
|
|
|
|
Matrix matrix = createMatrix(matrix1.rows, matrix1.cols);
|
|
|
|
for (int index = 0; index < matrix1.rows * matrix1.cols; index++)
|
|
{
|
|
matrix.buffer[index] = matrix1.buffer[index] + matrix2Neu.buffer[index];
|
|
}
|
|
if (freigabe == 1)
|
|
free(matrix2Neu.buffer);
|
|
|
|
return matrix;
|
|
}
|
|
|
|
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
|
|
{
|
|
|
|
if (matrix1.cols != matrix2.rows)
|
|
{
|
|
perror("Die Matritzen koennen nicht multipliziert werden");
|
|
return createMatrix(0, 0);
|
|
;
|
|
}
|
|
|
|
if (matrix1.rows == 0 || matrix1.cols == 0 || matrix2.rows == 0 || matrix2.cols == 0)
|
|
{
|
|
perror("Die Matrizen sind leer");
|
|
return createMatrix(0, 0);
|
|
}
|
|
|
|
Matrix matrix = createMatrix(matrix1.rows, matrix2.cols);
|
|
|
|
int index = 0;
|
|
float wert = 0.0;
|
|
for (int i = 0; i < matrix1.rows * matrix1.cols; i += matrix1.cols)
|
|
{
|
|
for (int j = 0; j < matrix2.cols; j++)
|
|
{
|
|
for (int k = 0; k < matrix1.cols; k++)
|
|
{
|
|
wert += matrix1.buffer[i + k] * matrix2.buffer[j + k * matrix2.cols];
|
|
}
|
|
matrix.buffer[index] = wert;
|
|
wert = 0.0;
|
|
index++;
|
|
}
|
|
}
|
|
|
|
return matrix;
|
|
} |