#include #include #include #include #include "numbers.h" #include "bintree.h" CompareFctType compareFct(const void *arg1, const void *arg2) { const unsigned int *entry1 = arg1; const unsigned int *entry2 = arg2; int result = *entry2 - *entry1; return result; } // TODO: getDuplicate und createNumbers implementieren /* * * Erzeugen eines Arrays mit der vom Nutzer eingegebenen Anzahl an Zufallszahlen. * Sicherstellen, dass beim Befüllen keine Duplikate entstehen. * Duplizieren eines zufälligen Eintrags im Array. * in `getDuplicate()`: Sortieren des Arrays und Erkennen der doppelten Zahl durch Vergleich benachbarter Elemente. */ // Returns len random numbers between 1 and 2x len in random order which are all different, except for two entries. // Returns NULL on errors. Use your implementation of the binary search tree to check for possible duplicates while // creating random numbers. unsigned int* createNumbers(unsigned int len) { srand(time(NULL)); TreeNode *numbers; int isDuplicate = 0; int number = rand() % (2 * len) + 1; int* array = malloc(len*sizeof(int)); numbers = addToTree(NULL, &number, sizeof(int), compareFct, &isDuplicate); array[0] = number; for (int i = 1; i < len; i++) { number = rand() % (2 * len) + 1; addToTree(numbers, &number, sizeof(int), compareFct, &isDuplicate); if (isDuplicate == 1) { isDuplicate = 0; i--; }else{ array[i] = number; } } int duplicatePosition1 = rand() % len; int duplicatePosition2 = rand() % len; while(duplicatePosition2 == duplicatePosition1){ duplicatePosition2 = rand() % len; } array[duplicatePosition2] = array[duplicatePosition1]; return array; } // Returns only the only number in numbers which is present twice. Returns zero on errors. unsigned int getDuplicate(const unsigned int numbers[], unsigned int len) { qsort(numbers, len, sizeof(int), compareFct); for(int i = 0; i < len-1; i++){ if(numbers[i] == numbers[i+1]){ return numbers[i]; } } return 0; }