Browse Source

camera detection for correct field

master
David Engert 1 year ago
parent
commit
ddea6ea320

+ 1
- 1
ip adressen.txt View File

Bilal IP : 192.168.50.130
Bilal: 192.168.50.130
Youssef: 192.168.50.226 Youssef: 192.168.50.226
David: 192.168.50.79 David: 192.168.50.79

+ 0
- 1
src_folder/BackEnd/CameraDetection/Track.py View File

import time
import numpy as np import numpy as np
import cv2 import cv2



+ 88
- 100
src_folder/BackEnd/camera.py View File

import cv2 import cv2
import numpy as np import numpy as np
import pandas as pd





class Camera(): class Camera():
self.upper_blue = np.array([130, 255, 255]) self.upper_blue = np.array([130, 255, 255])


self.video = cv2.VideoCapture(0) self.video = cv2.VideoCapture(0)
self.image = np.ndarray([])

self.picture_counter = 0
self.evaluate_picture = False
self.start_process = False
self.correct_field_frame = 0
self.mean_error = []
self.scores = {'score_red': 0,
'score_green': 0,
'score_blue': 0
}


def get_frame(self) -> np.ndarray: def get_frame(self) -> np.ndarray:
try: try:
_, self.image = self.video.read(0)
_, self.image = self.video.read(1)
except Exception as err: except Exception as err:
print("Can not capture the video..\n") print("Can not capture the video..\n")
print(err) print(err)
return self.image return self.image
def set_take_picture(self, take: bool):
self.evaluate_picture = take

def take_picture(self) -> None:
file_name = 'score_round'+ str(self.picture_counter) + '.png'
cv2.imwrite(file_name, self.image)
self.picture_counter = self.picture_counter + 1
self.set_take_picture(False)

def take_picture(self):
path = 'src_folder/Game_Images/'
file_name = 'current_score.png'
image_path = path+file_name
cv2.imwrite(image_path, self.image)
def detect_color(self, image): def detect_color(self, image):
hsv_img = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) hsv_img = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
count_red, count_green, count_blue= 0,0,0 count_red, count_green, count_blue= 0,0,0
results = []


for i, color in enumerate(self.colors): for i, color in enumerate(self.colors):
if i == 0: if i == 0:
upper = self.upper_blue upper = self.upper_blue


mask = cv2.inRange(hsv_img, lower, upper) mask = cv2.inRange(hsv_img, lower, upper)

contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
center = None
count = 0


for contour in contours: for contour in contours:
if count < 3:
if 100 < cv2.contourArea(contour):

M = cv2.moments(contour)
if M["m00"] > 0:
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
center = (cX, cY)
count += 1

x, y, w, h = cv2.boundingRect(contour)
cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
cv2.putText(image, self.color_names[i], (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)

if i == 0:
count_red += 1
elif i == 1:
count_green += 1
elif i == 2:
count_blue += 1
results.append(center)
current_score= {'score_red': count_red,
'score_green': count_green,
'score_blue': count_blue
}
return results, image, current_score

def determine_position(self,results, img_width):
positions = []

for result in results:
if result is None:
position = 0
else:
x = result[0]
if x < img_width / 3:
position = 3
elif x < 2 * img_width / 3:
position = 2
else:
position = 1

positions.append(position)
return positions

def check_correct_field(self, correct_field: int):
pass
if 100 < cv2.contourArea(contour):
x, y, w, h = cv2.boundingRect(contour)
cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
cv2.putText(image, self.color_names[i], (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)

if i == 0:
count_red += 1
elif i == 1:
count_green += 1
elif i == 2:
count_blue += 1

self.scores['score_red'] = count_red
self.scores['score_green'] = count_green
self.scores['score_blue'] = count_blue


def current_score(self, scores: dict): def current_score(self, scores: dict):
return scores return scores


def main():
my_camera = Camera()

while True:
frame = my_camera.get_frame()
results, image, current_score = my_camera.detect_color(frame)

if my_camera.evaluate_picture:
my_camera.take_picture()
my_camera.current_score(current_score)

cv2.putText(frame, f"Rot: {current_score['score_red']}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, my_camera.colors[0], 2)
cv2.putText(frame, f"Gruen: {current_score['score_green']}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 1, my_camera.colors[1], 2)
cv2.putText(frame, f"Blau: {current_score['score_blue']}", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 1, my_camera.colors[2], 2)

img_width = frame.shape[1]
positions = my_camera.determine_position(results, img_width)

for i, position in enumerate(positions):
cv2.putText(image, f"{my_camera.color_names[i]}: {position}", (10, 150 + 30 * i),
cv2.FONT_HERSHEY_SIMPLEX, 1, my_camera.colors[i], 2)

cv2.line(img=image, pt1=(img_width // 3, 0), pt2=(img_width // 3, frame.shape[0]), color=(0, 0, 0), thickness=2)
cv2.line(img=image, pt1=(2 * img_width // 3, 0), pt2=(2 * img_width // 3, frame.shape[0]), color=(0, 0, 0), thickness=2)

cv2.imshow("Farberkennung", frame)
print(current_score)
if cv2.waitKey(1) & 0xFF == ord('q'):
break

my_camera.video.release()
cv2.destroyAllWindows()

def range_of_interest(self, frame: np.ndarray, correct_field: int):
num_windows_in_y = 1
num_windows_in_x = 3

height, width, _ = frame.shape
roi_height = height/num_windows_in_y
roi_width = width/num_windows_in_x
images = []
for x in range(0,num_windows_in_y):
for y in range(0,num_windows_in_x):
tmp_image=frame[int(x*roi_height):int((x+1)*roi_height), int(y*roi_width):int((y+1)*roi_width)]
images.append(tmp_image)

correct_field_frame = images[correct_field]
return correct_field_frame
def reduce_errors(self, mean_error_list: list):
for team_color in self.current_score.keys():
df = pd.DataFrame(mean_error_list)
total = df[team_color].sum()
number_of_rows = len(df.index)
error = total/number_of_rows
self.current_score[team_color] = round(error)

def process(self):
my_camera = Camera()
square_error = []

while my_camera.start_process:
frame = my_camera.get_frame()
interested_area = my_camera.range_of_interest(frame, my_camera.correct_field_frame)
my_camera.detect_color(interested_area)
cv2.line(img=frame, pt1=(frame.shape[1]//3, 0), pt2=(frame.shape[1]//3, frame.shape[0]), color=(0, 0, 0), thickness=2)
cv2.line(img=frame, pt1=(2 * frame.shape[1]//3, 0), pt2=(2 * frame.shape[1]//3, frame.shape[0]), color=(0, 0, 0), thickness=2)
cv2.imshow("Kamera 1,2 oder 3", frame)

print(my_camera.scores)
square_error.append(my_camera.scores)
if not my_camera.start_process:
pass

if cv2.waitKey(1) & 0xFF == ord('q'):
my_camera.take_picture()
print(my_camera.scores)
break

my_camera.video.release()
cv2.destroyAllWindows()


# nur zum testen: my_camera.start_process auf True setzen und correct_field_frame zwischen 1 und 3 wählen
# if __name__ == "__main__":
# my_camera = Camera()
# my_camera.process()


if __name__ == "__main__":
main()

+ 3
- 8
src_folder/BackEnd/game.py View File

import random
from Database.database import QuestionDataBase from Database.database import QuestionDataBase
import random






'score_green': 0, 'score_green': 0,
'score_blue': 0 'score_blue': 0
} }

self.questions = QuestionDataBase('src_folder/BackEnd/Database/EinsZweiOderDrei.db') self.questions = QuestionDataBase('src_folder/BackEnd/Database/EinsZweiOderDrei.db')
self.available_questions = list(range(1, self.questions.num_rows())) self.available_questions = list(range(1, self.questions.num_rows()))
self.field = correct_field self.field = correct_field
def set_teamsize(self, teamsize: int): def set_teamsize(self, teamsize: int):
self.teamsize = teamsize self.teamsize = teamsize
def add_score(self, current_score: dict):
def add_score(self, current_score: dict) -> dict:
for key in self.scoreboard.keys(): for key in self.scoreboard.keys():
if key in current_score.keys(): if key in current_score.keys():
self.scoreboard[key] = self.scoreboard[key] + current_score[key] self.scoreboard[key] = self.scoreboard[key] + current_score[key]
return self.scoreboard return self.scoreboard
def set_scoreboard(self, current_scores: dict):
def set_scoreboard(self, current_scores: dict) -> dict:
self.scoreboard = self.add_score(current_scores) self.scoreboard = self.add_score(current_scores)
return self.scoreboard return self.scoreboard
def shuffle_answeroptions(self): def shuffle_answeroptions(self):
answeroptions = ['Answeroption_1', 'Answeroption_2', 'Answeroption_3'] answeroptions = ['Answeroption_1', 'Answeroption_2', 'Answeroption_3']
keys = [] keys = []
print(self.question)


for answer in answeroptions: for answer in answeroptions:
keys.append(self.question[answer]) keys.append(self.question[answer])


def final_result(self): def final_result(self):
self.final_score = dict(sorted(self.scoreboard.items(), key=lambda x: x[1], reverse=True)) self.final_score = dict(sorted(self.scoreboard.items(), key=lambda x: x[1], reverse=True))




+ 9
- 8
src_folder/BackEnd/router.py View File

from flask import Flask, jsonify, Response, request from flask import Flask, jsonify, Response, request
from game import Game
from camera import Camera from camera import Camera
from game import Game
import time


app = Flask(__name__) app = Flask(__name__)




@app.route('/check', methods=['GET']) @app.route('/check', methods=['GET'])
def check(): def check():
# my_camera.check_correct_field(my_game.field)
my_camera.set_take_picture(True)
return my_game.scoreboard
my_camera.start_process = True
my_camera.process()
time.sleep(5)
my_camera.correct_field_frame = my_game.field
my_game.set_scoreboard(my_camera.scores)
my_camera.start_process = False
return jsonify(my_game.scoreboard)


@app.route('/reset', methods=['GET']) @app.route('/reset', methods=['GET'])
def reset(): def reset():
# app.run(host='127.0.0.1', port=5555, debug=True) # app.run(host='127.0.0.1', port=5555, debug=True)



if __name__ == '__main__': if __name__ == '__main__':
main() main()



BIN
src_folder/Game_Images/current_score.png View File


Loading…
Cancel
Save