camera detection for correct field
This commit is contained in:
parent
4524a0a32b
commit
ddea6ea320
@ -1,3 +1,3 @@
|
||||
Bilal IP : 192.168.50.130
|
||||
Bilal: 192.168.50.130
|
||||
Youssef: 192.168.50.226
|
||||
David: 192.168.50.79
|
@ -1,4 +1,3 @@
|
||||
import time
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
|
@ -1,5 +1,7 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
|
||||
|
||||
class Camera():
|
||||
@ -17,32 +19,31 @@ class Camera():
|
||||
self.upper_blue = np.array([130, 255, 255])
|
||||
|
||||
self.video = cv2.VideoCapture(0)
|
||||
self.image = np.ndarray([])
|
||||
|
||||
self.picture_counter = 0
|
||||
self.evaluate_picture = False
|
||||
self.start_process = False
|
||||
self.correct_field_frame = 0
|
||||
self.mean_error = []
|
||||
self.scores = {'score_red': 0,
|
||||
'score_green': 0,
|
||||
'score_blue': 0
|
||||
}
|
||||
|
||||
def get_frame(self) -> np.ndarray:
|
||||
try:
|
||||
_, self.image = self.video.read(0)
|
||||
_, self.image = self.video.read(1)
|
||||
except Exception as err:
|
||||
print("Can not capture the video..\n")
|
||||
print(err)
|
||||
return self.image
|
||||
|
||||
def set_take_picture(self, take: bool):
|
||||
self.evaluate_picture = take
|
||||
|
||||
def take_picture(self) -> None:
|
||||
file_name = 'score_round'+ str(self.picture_counter) + '.png'
|
||||
cv2.imwrite(file_name, self.image)
|
||||
self.picture_counter = self.picture_counter + 1
|
||||
self.set_take_picture(False)
|
||||
def take_picture(self):
|
||||
path = 'src_folder/Game_Images/'
|
||||
file_name = 'current_score.png'
|
||||
image_path = path+file_name
|
||||
cv2.imwrite(image_path, self.image)
|
||||
|
||||
def detect_color(self, image):
|
||||
hsv_img = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
||||
count_red, count_green, count_blue= 0,0,0
|
||||
results = []
|
||||
|
||||
for i, color in enumerate(self.colors):
|
||||
if i == 0:
|
||||
@ -56,22 +57,10 @@ class Camera():
|
||||
upper = self.upper_blue
|
||||
|
||||
mask = cv2.inRange(hsv_img, lower, upper)
|
||||
|
||||
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
center = None
|
||||
count = 0
|
||||
|
||||
for contour in contours:
|
||||
if count < 3:
|
||||
if 100 < cv2.contourArea(contour):
|
||||
|
||||
M = cv2.moments(contour)
|
||||
if M["m00"] > 0:
|
||||
cX = int(M["m10"] / M["m00"])
|
||||
cY = int(M["m01"] / M["m00"])
|
||||
center = (cX, cY)
|
||||
count += 1
|
||||
|
||||
x, y, w, h = cv2.boundingRect(contour)
|
||||
cv2.rectangle(image, (x, y), (x + w, y + h), color, 2)
|
||||
cv2.putText(image, self.color_names[i], (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)
|
||||
@ -82,70 +71,69 @@ class Camera():
|
||||
count_green += 1
|
||||
elif i == 2:
|
||||
count_blue += 1
|
||||
results.append(center)
|
||||
current_score= {'score_red': count_red,
|
||||
'score_green': count_green,
|
||||
'score_blue': count_blue
|
||||
}
|
||||
return results, image, current_score
|
||||
|
||||
def determine_position(self,results, img_width):
|
||||
positions = []
|
||||
|
||||
for result in results:
|
||||
if result is None:
|
||||
position = 0
|
||||
else:
|
||||
x = result[0]
|
||||
if x < img_width / 3:
|
||||
position = 3
|
||||
elif x < 2 * img_width / 3:
|
||||
position = 2
|
||||
else:
|
||||
position = 1
|
||||
|
||||
positions.append(position)
|
||||
return positions
|
||||
|
||||
def check_correct_field(self, correct_field: int):
|
||||
pass
|
||||
self.scores['score_red'] = count_red
|
||||
self.scores['score_green'] = count_green
|
||||
self.scores['score_blue'] = count_blue
|
||||
|
||||
def current_score(self, scores: dict):
|
||||
return scores
|
||||
|
||||
def main():
|
||||
def range_of_interest(self, frame: np.ndarray, correct_field: int):
|
||||
num_windows_in_y = 1
|
||||
num_windows_in_x = 3
|
||||
|
||||
height, width, _ = frame.shape
|
||||
roi_height = height/num_windows_in_y
|
||||
roi_width = width/num_windows_in_x
|
||||
images = []
|
||||
|
||||
for x in range(0,num_windows_in_y):
|
||||
for y in range(0,num_windows_in_x):
|
||||
tmp_image=frame[int(x*roi_height):int((x+1)*roi_height), int(y*roi_width):int((y+1)*roi_width)]
|
||||
images.append(tmp_image)
|
||||
|
||||
correct_field_frame = images[correct_field]
|
||||
return correct_field_frame
|
||||
|
||||
def reduce_errors(self, mean_error_list: list):
|
||||
for team_color in self.current_score.keys():
|
||||
df = pd.DataFrame(mean_error_list)
|
||||
total = df[team_color].sum()
|
||||
number_of_rows = len(df.index)
|
||||
error = total/number_of_rows
|
||||
self.current_score[team_color] = round(error)
|
||||
|
||||
def process(self):
|
||||
my_camera = Camera()
|
||||
square_error = []
|
||||
|
||||
while True:
|
||||
while my_camera.start_process:
|
||||
frame = my_camera.get_frame()
|
||||
results, image, current_score = my_camera.detect_color(frame)
|
||||
interested_area = my_camera.range_of_interest(frame, my_camera.correct_field_frame)
|
||||
my_camera.detect_color(interested_area)
|
||||
|
||||
if my_camera.evaluate_picture:
|
||||
my_camera.take_picture()
|
||||
my_camera.current_score(current_score)
|
||||
cv2.line(img=frame, pt1=(frame.shape[1]//3, 0), pt2=(frame.shape[1]//3, frame.shape[0]), color=(0, 0, 0), thickness=2)
|
||||
cv2.line(img=frame, pt1=(2 * frame.shape[1]//3, 0), pt2=(2 * frame.shape[1]//3, frame.shape[0]), color=(0, 0, 0), thickness=2)
|
||||
cv2.imshow("Kamera 1,2 oder 3", frame)
|
||||
|
||||
cv2.putText(frame, f"Rot: {current_score['score_red']}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, my_camera.colors[0], 2)
|
||||
cv2.putText(frame, f"Gruen: {current_score['score_green']}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 1, my_camera.colors[1], 2)
|
||||
cv2.putText(frame, f"Blau: {current_score['score_blue']}", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 1, my_camera.colors[2], 2)
|
||||
print(my_camera.scores)
|
||||
square_error.append(my_camera.scores)
|
||||
|
||||
img_width = frame.shape[1]
|
||||
positions = my_camera.determine_position(results, img_width)
|
||||
if not my_camera.start_process:
|
||||
pass
|
||||
|
||||
for i, position in enumerate(positions):
|
||||
cv2.putText(image, f"{my_camera.color_names[i]}: {position}", (10, 150 + 30 * i),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 1, my_camera.colors[i], 2)
|
||||
|
||||
cv2.line(img=image, pt1=(img_width // 3, 0), pt2=(img_width // 3, frame.shape[0]), color=(0, 0, 0), thickness=2)
|
||||
cv2.line(img=image, pt1=(2 * img_width // 3, 0), pt2=(2 * img_width // 3, frame.shape[0]), color=(0, 0, 0), thickness=2)
|
||||
|
||||
cv2.imshow("Farberkennung", frame)
|
||||
print(current_score)
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
my_camera.take_picture()
|
||||
print(my_camera.scores)
|
||||
break
|
||||
|
||||
my_camera.video.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
# nur zum testen: my_camera.start_process auf True setzen und correct_field_frame zwischen 1 und 3 wählen
|
||||
# if __name__ == "__main__":
|
||||
# my_camera = Camera()
|
||||
# my_camera.process()
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
import random
|
||||
from Database.database import QuestionDataBase
|
||||
import random
|
||||
|
||||
|
||||
|
||||
@ -10,7 +10,6 @@ class Game:
|
||||
'score_green': 0,
|
||||
'score_blue': 0
|
||||
}
|
||||
|
||||
self.questions = QuestionDataBase('src_folder/BackEnd/Database/EinsZweiOderDrei.db')
|
||||
self.available_questions = list(range(1, self.questions.num_rows()))
|
||||
self.field = correct_field
|
||||
@ -20,13 +19,13 @@ class Game:
|
||||
def set_teamsize(self, teamsize: int):
|
||||
self.teamsize = teamsize
|
||||
|
||||
def add_score(self, current_score: dict):
|
||||
def add_score(self, current_score: dict) -> dict:
|
||||
for key in self.scoreboard.keys():
|
||||
if key in current_score.keys():
|
||||
self.scoreboard[key] = self.scoreboard[key] + current_score[key]
|
||||
return self.scoreboard
|
||||
|
||||
def set_scoreboard(self, current_scores: dict):
|
||||
def set_scoreboard(self, current_scores: dict) -> dict:
|
||||
self.scoreboard = self.add_score(current_scores)
|
||||
return self.scoreboard
|
||||
|
||||
@ -51,7 +50,6 @@ class Game:
|
||||
def shuffle_answeroptions(self):
|
||||
answeroptions = ['Answeroption_1', 'Answeroption_2', 'Answeroption_3']
|
||||
keys = []
|
||||
print(self.question)
|
||||
|
||||
for answer in answeroptions:
|
||||
keys.append(self.question[answer])
|
||||
@ -74,6 +72,3 @@ class Game:
|
||||
|
||||
def final_result(self):
|
||||
self.final_score = dict(sorted(self.scoreboard.items(), key=lambda x: x[1], reverse=True))
|
||||
|
||||
|
||||
|
||||
|
@ -1,6 +1,7 @@
|
||||
from flask import Flask, jsonify, Response, request
|
||||
from game import Game
|
||||
from camera import Camera
|
||||
from game import Game
|
||||
import time
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
@ -27,10 +28,13 @@ def scoreboard():
|
||||
|
||||
@app.route('/check', methods=['GET'])
|
||||
def check():
|
||||
# my_camera.check_correct_field(my_game.field)
|
||||
my_camera.set_take_picture(True)
|
||||
|
||||
return my_game.scoreboard
|
||||
my_camera.start_process = True
|
||||
my_camera.process()
|
||||
time.sleep(5)
|
||||
my_camera.correct_field_frame = my_game.field
|
||||
my_game.set_scoreboard(my_camera.scores)
|
||||
my_camera.start_process = False
|
||||
return jsonify(my_game.scoreboard)
|
||||
|
||||
@app.route('/reset', methods=['GET'])
|
||||
def reset():
|
||||
@ -56,8 +60,5 @@ def main():
|
||||
# app.run(host='127.0.0.1', port=5555, debug=True)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
|
||||
|
BIN
src_folder/Game_Images/current_score.png
Normal file
BIN
src_folder/Game_Images/current_score.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 348 KiB |
Loading…
x
Reference in New Issue
Block a user