Browse Source

erste test für initial commit

master
Youssef Bachiri 1 year ago
parent
commit
f1759641d1

+ 137
- 0
src_folder/BackEnd/CameraDetection/CameraDetection.py View File

@@ -0,0 +1,137 @@
import cv2
import numpy as np
# from Track import nothing
# Farbwerte für die Erkennung (Beispiel: Rot, Grün, Blau)
colors = [(0, 0, 255), (0, 255, 0), (255, 0, 0)]
color_names = ["Rot", "Gruen", "Blau"]

# Farbgrenzen für die Erkennung
lower_red = np.array([0, 100, 100])
upper_red = np.array([10, 255, 255])

lower_green = np.array([40, 100, 100])
upper_green = np.array([70, 255, 255])

lower_blue = np.array([90, 100, 100])
upper_blue = np.array([130, 255, 255])

# Funktion zur Farberkennung
def erkennung_farben(img):
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
results = []

count_red = 0
count_green = 0
count_blue = 0

for i, color in enumerate(colors):
if i == 0:
lower = lower_red
upper = upper_red
elif i == 1:
lower = lower_green
upper = upper_green
elif i == 2:
lower = lower_blue
upper = upper_blue

mask = cv2.inRange(hsv_img, lower, upper)

# Farbfläche finden
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
center = None
count = 0

for contour in contours:
if count < 3:
if cv2.contourArea(contour) > 100:
# Schwerpunkt der Kontur berechnen
M = cv2.moments(contour)
if M["m00"] > 0:
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
center = (cX, cY)
count += 1
# Rechteck zeichnen
x, y, w, h = cv2.boundingRect(contour)
cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
cv2.putText(img, color_names[i], (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)

# Farbanzahl erhöhen
if i == 0:
count_red += 1
elif i == 1:
count_green += 1
elif i == 2:
count_blue += 1



results.append(center)

return img, results, count_red, count_green, count_blue

# Funktion zur Positionsermittlung
def ermittle_position(results, img_width):
positions = []

for result in results:
if result is None:
position = "Nicht gefunden"
else:
x = result[0]
if x < img_width / 3:
position = "Rechts"
elif x < 2 * img_width / 3:
position = "Mitte"
else:
position = "Links"

positions.append(position)

return positions

# Hauptprogramm
if __name__ == "__main__":
# Videoquelle öffnen (kann auch eine Bilddatei sein)
video = cv2.VideoCapture(1) # Hier "0" für die Kamera verwenden

while True:
# Einzelbild von der Videoquelle lesen
ret, frame = video.read()

# Fehlerbehandlung, wenn kein Bild gelesen werden kann
if not ret:
break

# Farben erkennen
farben_img, ergebnisse, count_red, count_green, count_blue = erkennung_farben(frame)

# Anzahl der Farben anzeigen
cv2.putText(farben_img, f"Rot: {count_red}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, colors[0], 2)
cv2.putText(farben_img, f"Gruen: {count_green}", (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 1, colors[1], 2)
cv2.putText(farben_img, f"Blau: {count_blue}", (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 1, colors[2], 2)

# Positionen ermitteln
img_width = frame.shape[1]
positionen = ermittle_position(ergebnisse, img_width)

# Positionen anzeigen
for i, position in enumerate(positionen):
cv2.putText(farben_img, f"{color_names[i]}: {position}", (10, 150 + 30 * i),
cv2.FONT_HERSHEY_SIMPLEX, 1, colors[i], 2)

# Linien zeichnen
cv2.line(farben_img, (img_width // 3, 0), (img_width // 3, frame.shape[0]), (0, 0, 0), 2)
cv2.line(farben_img, (2 * img_width // 3, 0), (2 * img_width // 3, frame.shape[0]), (0, 0, 0), 2)

# Bild anzeigen
cv2.imshow("Farberkennung", farben_img)

# Auf "q" drücken, um die Schleife zu beenden
if cv2.waitKey(1) & 0xFF == ord('q'):
break

# Videoquelle und Fenster schließen
video.release()
cv2.destroyAllWindows()

+ 44
- 0
src_folder/BackEnd/CameraDetection/Track.py View File

@@ -0,0 +1,44 @@
import time
import numpy as np
import cv2

cap = cv2.VideoCapture(0)

def nothing(x):
pass


cv2.namedWindow("Trackbars")
cv2.createTrackbar("L - H", "Trackbars", 0, 255, nothing)
cv2.createTrackbar("L - S", "Trackbars", 0, 255, nothing)
cv2.createTrackbar("L - V", "Trackbars", 0, 255, nothing)
cv2.createTrackbar("U - H", "Trackbars", 255, 255, nothing)
cv2.createTrackbar("U - S", "Trackbars", 255, 255, nothing)
cv2.createTrackbar("U - V", "Trackbars", 255, 255, nothing)

while True:
ret, frame = cap.read()
frame = cv2.resize(frame, (640, 480))
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

l_h = cv2.getTrackbarPos("L - H", "Trackbars")
l_s = cv2.getTrackbarPos("L - S", "Trackbars")
l_v = cv2.getTrackbarPos("L - V", "Trackbars")
u_h = cv2.getTrackbarPos("U - H", "Trackbars")
u_s = cv2.getTrackbarPos("U - S", "Trackbars")
u_v = cv2.getTrackbarPos("U - V", "Trackbars")
lower_range = np.array([l_h, l_s, l_v])
upper_range = np.array([u_h, u_s, u_v])
mask = cv2.inRange(hsv, lower_range, upper_range)
result = cv2.bitwise_and(frame, frame, mask=mask)

# show thresholded image
cv2.imshow("mask", mask)
cv2.imshow("result", result)

key = cv2.waitKey(1) & 0xFF
if key == ord("q"):
break
cap.release()
cv2.destroyAllWindows()


Loading…
Cancel
Save