library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.reg32.all; use work.task.all; entity add is port ( clk : in std_logic; reset : in std_logic; task_start : in std_logic; task_state : out work.task.State; signal_a_read : out std_logic; signal_a_readdata : in std_logic_vector( 31 downto 0 ); signal_b_read : out std_logic; signal_b_readdata : in std_logic_vector( 31 downto 0 ); signal_write : out std_logic; signal_writedata : out std_logic_vector( 31 downto 0 ) ); end entity add; -- tbd -- if _read is 1 _readdata is read -- if _write is 1 _writedata is written -- float_add instanziieren -- state machine that sets taskState and write signals architecture rtl of add is component float_add port ( clk : in std_logic; reset : in std_logic; start : in std_logic; A : in std_logic_vector( 31 downto 0 ); B : in std_logic_vector( 31 downto 0 ); done : out std_logic; sum : out std_logic_vector( 31 downto 0 ) ); end component float_add; signal current_task_state : work.task.State; signal next_task_state : work.task.State; signal index : integer range 0 to work.task.STREAM_LEN; signal float_add_start : std_logic; signal float_add_A : std_logic_vector( 31 downto 0 ); signal float_add_B : std_logic_vector( 31 downto 0 ); signal float_add_done : std_logic; signal float_add_sum : std_logic_vector( 31 downto 0 ); signal add_state : integer range 0 to 3; signal flag_index : bit; begin float_adder : float_add port map ( clk => clk, reset => reset, start => float_add_start, A => float_add_A, -- feed readdata into float adder B => float_add_B, -- feed readdata into float adder done => float_add_done, -- write signal when float addition is finished sum => float_add_sum -- feed output of float adder into writedata ); task_state_transitions : process ( current_task_state, task_start, index ) is begin next_task_state <= current_task_state; case current_task_state is when work.task.TASK_IDLE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; when work.task.TASK_RUNNING => if ( index = work.task.STREAM_LEN - 1 ) then next_task_state <= work.task.TASK_DONE; end if; when work.task.TASK_DONE => if ( task_start = '1' ) then next_task_state <= work.task.TASK_RUNNING; end if; end case; end process task_state_transitions; sync : process ( clk, reset ) is begin if ( reset = '1' ) then current_task_state <= work.task.TASK_IDLE; index <= 0; elsif ( rising_edge( clk ) ) then current_task_state <= next_task_state; case next_task_state is when work.task.TASK_IDLE => index <= 0; -- signal_write <= '0'; when work.task.TASK_RUNNING => -- signal_writedata <= result??? if ( flag_index = '1' ) then index <= index + 1; end if; -- signal_write <= '1'; -- signal_writedata <= ( others => '0' ); when work.task.TASK_DONE => index <= 0; -- signal_write <= '0'; end case; end if; end process sync; add : process (clk, reset) is begin if ( reset = '1' ) then signal_a_read <= '0'; signal_b_read <= '0'; signal_write <= '0'; signal_writedata <= ( others => '0'); float_add_start <= '0'; float_add_A <= ( others => '0'); float_add_B <= ( others => '0'); elsif ( rising_edge( clk ) ) then case add_state is when 0 => if ( current_task_state = work.task.TASK_RUNNING ) then add_state <= 1; end if; when 1 => signal_a_read <= '1'; signal_b_read <= '1'; float_add_start <= '1'; float_add_A <= signal_a_readdata; float_add_B <= signal_b_readdata; if ( float_add_done = '1' ) then add_state <= 2; end if; when 2 => signal_write <= '1'; signal_writedata <= float_add_sum; float_add_start <= '0'; signal_a_read <= '0'; signal_b_read <= '0'; flag_index <= '1'; add_state <= 3; when 3 => signal_write <= '0'; flag_index <= '0'; add_state <= 0; end case; end if; end process add; task_state <= current_task_state; end architecture rtl;