neuralNetworkTests.c imageInput.c und Troubleshooting #4
@ -1,22 +1,183 @@
|
||||
// #include <stdio.h>
|
||||
// #include <stdlib.h>
|
||||
// #include <string.h>
|
||||
// #include "imageInput.h"
|
||||
//
|
||||
// #define BUFFER_SIZE 100
|
||||
// #define FILE_HEADER_STRING "__info2_image_file_format__"
|
||||
//
|
||||
// // TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
|
||||
//
|
||||
// // TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
|
||||
// GrayScaleImageSeries *readImages(const char *path)
|
||||
// {
|
||||
// GrayScaleImageSeries *series = NULL;
|
||||
//
|
||||
// return series;
|
||||
// }
|
||||
//
|
||||
// // TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
|
||||
// void clearSeries(GrayScaleImageSeries *series)
|
||||
// {
|
||||
//
|
||||
// }
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "imageInput.h"
|
||||
|
||||
#define BUFFER_SIZE 100
|
||||
#define FILE_HEADER_STRING "__info2_image_file_format__"
|
||||
|
||||
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
|
||||
// ---------------------------------------------------------
|
||||
// Hilfsfunktionen (static, nur in diesem Modul sichtbar)
|
||||
// ---------------------------------------------------------
|
||||
|
||||
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
|
||||
GrayScaleImageSeries *readImages(const char *path)
|
||||
{
|
||||
GrayScaleImageSeries *series = NULL;
|
||||
/**
|
||||
* Prüft, ob die Datei mit dem korrekten Header-String beginnt.
|
||||
* Gibt 1 zurück, wenn korrekt, sonst 0.
|
||||
*/
|
||||
static int checkFileHeader(FILE *file) {
|
||||
const char *expectedHeader = FILE_HEADER_STRING;
|
||||
size_t headerLen = strlen(expectedHeader);
|
||||
char buffer[100]; // Puffer groß genug für den Header
|
||||
|
||||
// Wir lesen genau so viele Bytes, wie der Header lang ist
|
||||
if (fread(buffer, sizeof(char), headerLen, file) != headerLen) {
|
||||
return 0; // Lesefehler oder Datei zu kurz
|
||||
}
|
||||
|
||||
// Null-Terminierung sicherstellen für strcmp (obwohl wir auch memcmp nutzen könnten)
|
||||
buffer[headerLen] = '\0';
|
||||
|
||||
if (strcmp(buffer, expectedHeader) != 0) {
|
||||
return 0; // Header stimmt nicht überein
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Reserviert den Speicher für die Basis-Struktur der Bildserie.
|
||||
* Reserviert Arrays für 'images' und 'labels', aber noch nicht die Pixel-Buffer der einzelnen Bilder.
|
||||
*/
|
||||
static GrayScaleImageSeries *allocateSeries(unsigned short count) {
|
||||
GrayScaleImageSeries *series = (GrayScaleImageSeries *)malloc(sizeof(GrayScaleImageSeries));
|
||||
if (series == NULL) return NULL;
|
||||
|
||||
series->count = count;
|
||||
|
||||
// Speicher für das Array der Bild-Strukturen
|
||||
series->images = (GrayScaleImage *)calloc(count, sizeof(GrayScaleImage));
|
||||
// Speicher für das Array der Labels
|
||||
series->labels = (unsigned char *)calloc(count, sizeof(unsigned char));
|
||||
|
||||
if (series->images == NULL || series->labels == NULL) {
|
||||
// Falls eine Allokation fehlschlägt, alles bisherige freigeben
|
||||
free(series->images);
|
||||
free(series->labels);
|
||||
free(series);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return series;
|
||||
}
|
||||
|
||||
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
|
||||
void clearSeries(GrayScaleImageSeries *series)
|
||||
{
|
||||
/**
|
||||
* Liest ein einzelnes Bild (Pixeldaten) und das zugehörige Label.
|
||||
*/
|
||||
static int readSingleImage(FILE *file, GrayScaleImage *image, unsigned char *label, unsigned short width, unsigned short height) {
|
||||
image->width = width;
|
||||
image->height = height;
|
||||
|
||||
// Speicher für die Pixelwerte reservieren
|
||||
image->buffer = (GrayScalePixelType *)malloc(width * height * sizeof(GrayScalePixelType));
|
||||
if (image->buffer == NULL) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Pixelwerte lesen
|
||||
if (fread(image->buffer, sizeof(GrayScalePixelType), width * height, file) != width * height) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Label lesen
|
||||
if (fread(label, sizeof(unsigned char), 1, file) != 1) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
// ---------------------------------------------------------
|
||||
// Hauptfunktionen (öffentliche API)
|
||||
// ---------------------------------------------------------
|
||||
|
||||
GrayScaleImageSeries *readImages(const char *path) {
|
||||
FILE *file = fopen(path, "rb"); // WICHTIG: "rb" für binary mode
|
||||
if (file == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// 1. Header prüfen
|
||||
if (!checkFileHeader(file)) {
|
||||
fclose(file);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// 2. Dimensionen lesen (Anzahl, Breite, Höhe)
|
||||
unsigned short count, width, height;
|
||||
int readCount = 0;
|
||||
readCount += fread(&count, sizeof(unsigned short), 1, file);
|
||||
readCount += fread(&width, sizeof(unsigned short), 1, file);
|
||||
readCount += fread(&height, sizeof(unsigned short), 1, file);
|
||||
|
||||
if (readCount != 3) {
|
||||
fclose(file);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// 3. Speicherstruktur vorbereiten
|
||||
GrayScaleImageSeries *series = allocateSeries(count);
|
||||
if (series == NULL) {
|
||||
fclose(file);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// 4. Jedes Bild einzeln einlesen
|
||||
for (int i = 0; i < count; i++) {
|
||||
if (!readSingleImage(file, &series->images[i], &series->labels[i], width, height)) {
|
||||
// Fehler beim Lesen eines Bildes -> Aufräumen
|
||||
clearSeries(series);
|
||||
fclose(file);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
fclose(file);
|
||||
return series;
|
||||
}
|
||||
|
||||
void clearSeries(GrayScaleImageSeries *series) {
|
||||
if (series == NULL) return;
|
||||
|
||||
// 1. Pixel-Buffer jedes einzelnen Bildes freigeben
|
||||
if (series->images != NULL) {
|
||||
for (int i = 0; i < series->count; i++) {
|
||||
if (series->images[i].buffer != NULL) {
|
||||
free(series->images[i].buffer);
|
||||
series->images[i].buffer = NULL;
|
||||
}
|
||||
}
|
||||
// 2. Das Array der Bild-Strukturen freigeben
|
||||
free(series->images);
|
||||
}
|
||||
|
||||
// 3. Das Label-Array freigeben
|
||||
if (series->labels != NULL) {
|
||||
free(series->labels);
|
||||
}
|
||||
|
||||
// 4. Die Hauptstruktur freigeben
|
||||
free(series);
|
||||
}
|
||||
@ -116,7 +116,7 @@ Matrix add(const Matrix matrix1, const Matrix matrix2)
|
||||
|
||||
for(unsigned int i = 0; i < resRows; ++i)
|
||||
{
|
||||
for(unsigned int j = 0; i < resCols; ++j)
|
||||
for(unsigned int j = 0; j < resCols; ++j)
|
||||
{
|
||||
unsigned int i1 = (matrix1.rows == 1) ? 0 : i;
|
||||
unsigned int j1 = (matrix1.cols == 1) ? 0 : j;
|
||||
|
||||
@ -5,24 +5,7 @@
|
||||
#include "./unity/unity.h"
|
||||
#include "neuralNetwork.h"
|
||||
|
||||
// TODO
|
||||
// Das Neuronale Netz
|
||||
// Inhalte: Strukturen, Dateien schreiben
|
||||
// Ein neuronales besteht aus verschiedenen Schichten und ihren Parametern.
|
||||
// Die Struktur NeuralNetwork und die Implementierung in der entsprechenden Quelltextdatei bildet dies ab.
|
||||
// Für die passenden Unittests fehlt jedoch noch eine Methode, die eine gültige Testdatei erzeugt,
|
||||
// mit der die Funktionalität getestet werden kann.
|
||||
// Die Datei beginnt mit dem Identifikationstag __info2_neural_network_file_format__,
|
||||
// gefolgt von den einzelnen Schichten.
|
||||
//
|
||||
// Aufgaben:
|
||||
// 1) Implementieren Sie die Funktion prepareNeuralNetworkFile() in neuralNetworkTests.c.
|
||||
// Praktikum Informatik 2
|
||||
//
|
||||
// Wintersemester 2025
|
||||
// 2) Stellen Sie sicher, dass alle Unittests erfolgreich durchlaufen.
|
||||
// make neuralNetworkTests && ./runNeuralNetworkTests
|
||||
|
||||
// --- Implementierung der Hilfsfunktion ---
|
||||
|
||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||
{
|
||||
@ -31,44 +14,46 @@ static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||
return;
|
||||
}
|
||||
|
||||
// 1. Header schreiben
|
||||
// 1. Header schreiben (ohne Nullterminator)
|
||||
const char *fileHeader = "__info2_neural_network_file_format__";
|
||||
fwrite(fileHeader, sizeof(char), strlen(fileHeader), file);
|
||||
|
||||
// Prüfen ob Layer existieren
|
||||
if (nn.numberOfLayers > 0)
|
||||
{
|
||||
// 2. Die Input-Dimension der ALLERERSTEN Schicht schreiben
|
||||
// (Das sind die Spalten der Gewichtsmatrix der ersten Schicht)
|
||||
// 2. Input-Dimension der ersten Schicht schreiben (Spalten der ersten Gewichtsmatrix)
|
||||
int inputDim = nn.layers[0].weights.cols;
|
||||
fwrite(&inputDim, sizeof(int), 1, file);
|
||||
|
||||
// 3. Durch alle Schichten iterieren
|
||||
for(int i = 0; i < nn.numberOfLayers; i++)
|
||||
{
|
||||
// Die Output-Dimension dieser Schicht schreiben (Zeilen der Gewichtsmatrix)
|
||||
// Output-Dimension der aktuellen Schicht schreiben (Zeilen der Gewichtsmatrix)
|
||||
int outputDim = nn.layers[i].weights.rows;
|
||||
fwrite(&outputDim, sizeof(int), 1, file);
|
||||
|
||||
// 4. Gewichte (Weights) schreiben (nur den Buffer, keine Dimensionen mehr!)
|
||||
// loadModel weiß durch inputDim und outputDim schon, wie groß die Matrix ist.
|
||||
// 4. Gewichte schreiben
|
||||
int weightsCount = nn.layers[i].weights.rows * nn.layers[i].weights.cols;
|
||||
fwrite(nn.layers[i].weights.buffer, sizeof(MatrixType), weightsCount, file);
|
||||
if (nn.layers[i].weights.buffer != NULL) {
|
||||
fwrite(nn.layers[i].weights.buffer, sizeof(MatrixType), weightsCount, file);
|
||||
}
|
||||
|
||||
// 5. Biases schreiben (nur den Buffer)
|
||||
// 5. Biases schreiben
|
||||
int biasCount = nn.layers[i].biases.rows * nn.layers[i].biases.cols;
|
||||
fwrite(nn.layers[i].biases.buffer, sizeof(MatrixType), biasCount, file);
|
||||
if (nn.layers[i].biases.buffer != NULL) {
|
||||
fwrite(nn.layers[i].biases.buffer, sizeof(MatrixType), biasCount, file);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 6. Eine 0 schreiben, um das Ende der Dimensionen zu signalisieren
|
||||
// (loadModel bricht die while-Schleife ab, wenn readDimension 0 liefert)
|
||||
// 6. Abbruchsignal (Dimension 0) schreiben
|
||||
int stopMark = 0;
|
||||
fwrite(&stopMark, sizeof(int), 1, file);
|
||||
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
// --- Unit Tests ---
|
||||
|
||||
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
@ -199,9 +184,7 @@ void test_loadModelFailsOnWrongFileTag(void)
|
||||
if(file != NULL)
|
||||
{
|
||||
const char *fileTag = "info2_neural_network_file_format";
|
||||
|
||||
fwrite(fileTag, sizeof(char), strlen(fileTag), file);
|
||||
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
@ -239,6 +222,8 @@ void test_clearModelSetsMembersToNull(void)
|
||||
|
||||
static void someActivation(Matrix *matrix)
|
||||
{
|
||||
if (matrix == NULL || matrix->buffer == NULL) return;
|
||||
|
||||
for(int i = 0; i < matrix->rows * matrix->cols; i++)
|
||||
{
|
||||
matrix->buffer[i] = fabs(matrix->buffer[i]);
|
||||
@ -251,26 +236,37 @@ void test_predictReturnsCorrectLabels(void)
|
||||
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
|
||||
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
|
||||
GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}};
|
||||
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
|
||||
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
|
||||
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
|
||||
|
||||
// Wir nutzen explizite Casts auf MatrixType, um sicherzustellen, dass die Typen stimmen
|
||||
// (besonders wichtig, falls MatrixType double ist, aber hier Ints stehen)
|
||||
MatrixType weightsBuffer1[] = {(MatrixType)1, (MatrixType)-2, (MatrixType)3, (MatrixType)-4, (MatrixType)5, (MatrixType)-6, (MatrixType)7, (MatrixType)-8};
|
||||
MatrixType weightsBuffer2[] = {(MatrixType)-9, (MatrixType)10, (MatrixType)11, (MatrixType)12, (MatrixType)13, (MatrixType)14};
|
||||
MatrixType weightsBuffer3[] = {(MatrixType)-15, (MatrixType)16, (MatrixType)17, (MatrixType)18, (MatrixType)-19, (MatrixType)20, (MatrixType)21, (MatrixType)22, (MatrixType)23, (MatrixType)-24, (MatrixType)25, (MatrixType)26, (MatrixType)27, (MatrixType)-28, (MatrixType)-29};
|
||||
|
||||
Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4};
|
||||
Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2};
|
||||
Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3};
|
||||
MatrixType biasBuffer1[] = {200, 0};
|
||||
MatrixType biasBuffer2[] = {0, -100, 0};
|
||||
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
|
||||
|
||||
MatrixType biasBuffer1[] = {(MatrixType)200, (MatrixType)0};
|
||||
MatrixType biasBuffer2[] = {(MatrixType)0, (MatrixType)-100, (MatrixType)0};
|
||||
MatrixType biasBuffer3[] = {(MatrixType)0, (MatrixType)-1000, (MatrixType)0, (MatrixType)2000, (MatrixType)0};
|
||||
|
||||
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
|
||||
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
|
||||
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
|
||||
|
||||
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
|
||||
{.weights=weights2, .biases=biases2, .activation=someActivation}, \
|
||||
{.weights=weights3, .biases=biases3, .activation=someActivation}};
|
||||
|
||||
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
|
||||
|
||||
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
||||
|
||||
TEST_ASSERT_NOT_NULL(predictedLabels);
|
||||
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
|
||||
TEST_ASSERT_EQUAL_UINT8_ARRAY(expectedLabels, predictedLabels, n);
|
||||
|
||||
free(predictedLabels);
|
||||
}
|
||||
|
||||
|
||||
300
Start_Windows/neuralnetworktestsold.c
Normal file
300
Start_Windows/neuralnetworktestsold.c
Normal file
@ -0,0 +1,300 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include "./unity/unity.h"
|
||||
#include "neuralNetwork.h"
|
||||
|
||||
// TODO
|
||||
// Das Neuronale Netz
|
||||
// Inhalte: Strukturen, Dateien schreiben
|
||||
// Ein neuronales besteht aus verschiedenen Schichten und ihren Parametern.
|
||||
// Die Struktur NeuralNetwork und die Implementierung in der entsprechenden Quelltextdatei bildet dies ab.
|
||||
// Für die passenden Unittests fehlt jedoch noch eine Methode, die eine gültige Testdatei erzeugt,
|
||||
// mit der die Funktionalität getestet werden kann.
|
||||
// Die Datei beginnt mit dem Identifikationstag __info2_neural_network_file_format__,
|
||||
// gefolgt von den einzelnen Schichten.
|
||||
//
|
||||
// Aufgaben:
|
||||
// 1) Implementieren Sie die Funktion prepareNeuralNetworkFile() in neuralNetworkTests.c.
|
||||
// Praktikum Informatik 2
|
||||
//
|
||||
// Wintersemester 2025
|
||||
// 2) Stellen Sie sicher, dass alle Unittests erfolgreich durchlaufen.
|
||||
// make neuralNetworkTests && ./runNeuralNetworkTests
|
||||
|
||||
|
||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||
{
|
||||
FILE *file = fopen(path, "wb");
|
||||
if (file == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
// 1. Header schreiben
|
||||
const char *fileHeader = "__info2_neural_network_file_format__";
|
||||
fwrite(fileHeader, sizeof(char), strlen(fileHeader), file);
|
||||
|
||||
// Prüfen ob Layer existieren
|
||||
if (nn.numberOfLayers > 0)
|
||||
{
|
||||
// 2. Die Input-Dimension der ALLERERSTEN Schicht schreiben
|
||||
// (Das sind die Spalten der Gewichtsmatrix der ersten Schicht)
|
||||
int inputDim = nn.layers[0].weights.cols;
|
||||
fwrite(&inputDim, sizeof(int), 1, file);
|
||||
|
||||
// 3. Durch alle Schichten iterieren
|
||||
for(int i = 0; i < nn.numberOfLayers; i++)
|
||||
{
|
||||
// Die Output-Dimension dieser Schicht schreiben (Zeilen der Gewichtsmatrix)
|
||||
int outputDim = nn.layers[i].weights.rows;
|
||||
fwrite(&outputDim, sizeof(int), 1, file);
|
||||
|
||||
// 4. Gewichte (Weights) schreiben (nur den Buffer, keine Dimensionen mehr!)
|
||||
// loadModel weiß durch inputDim und outputDim schon, wie groß die Matrix ist.
|
||||
int weightsCount = nn.layers[i].weights.rows * nn.layers[i].weights.cols;
|
||||
fwrite(nn.layers[i].weights.buffer, sizeof(MatrixType), weightsCount, file);
|
||||
|
||||
// 5. Biases schreiben (nur den Buffer)
|
||||
int biasCount = nn.layers[i].biases.rows * nn.layers[i].biases.cols;
|
||||
fwrite(nn.layers[i].biases.buffer, sizeof(MatrixType), biasCount, file);
|
||||
}
|
||||
}
|
||||
|
||||
// 6. Eine 0 schreiben, um das Ende der Dimensionen zu signalisieren
|
||||
// (loadModel bricht die while-Schleife ab, wenn readDimension 0 liefert)
|
||||
int stopMark = 0;
|
||||
fwrite(&stopMark, sizeof(int), 1, file);
|
||||
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
|
||||
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2};
|
||||
Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3};
|
||||
MatrixType buffer3[] = {1, 2, 3};
|
||||
MatrixType buffer4[] = {1, 2};
|
||||
Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1};
|
||||
Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1};
|
||||
Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
remove(path);
|
||||
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.numberOfLayers, netUnderTest.numberOfLayers);
|
||||
clearModel(&netUnderTest);
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectWeightDimensions(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
remove(path);
|
||||
|
||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols);
|
||||
clearModel(&netUnderTest);
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectBiasDimensions(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
remove(path);
|
||||
|
||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.rows, netUnderTest.layers[0].biases.rows);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.cols, netUnderTest.layers[0].biases.cols);
|
||||
clearModel(&netUnderTest);
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectWeights(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
remove(path);
|
||||
|
||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols);
|
||||
int n = netUnderTest.layers[0].weights.rows * netUnderTest.layers[0].weights.cols;
|
||||
TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].weights.buffer, netUnderTest.layers[0].weights.buffer, n);
|
||||
clearModel(&netUnderTest);
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectBiases(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
remove(path);
|
||||
|
||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows);
|
||||
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols);
|
||||
int n = netUnderTest.layers[0].biases.rows * netUnderTest.layers[0].biases.cols;
|
||||
TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].biases.buffer, netUnderTest.layers[0].biases.buffer, n);
|
||||
clearModel(&netUnderTest);
|
||||
}
|
||||
|
||||
void test_loadModelFailsOnWrongFileTag(void)
|
||||
{
|
||||
const char *path = "some_nn_test_file.info2";
|
||||
NeuralNetwork netUnderTest;
|
||||
FILE *file = fopen(path, "wb");
|
||||
|
||||
if(file != NULL)
|
||||
{
|
||||
const char *fileTag = "info2_neural_network_file_format";
|
||||
|
||||
fwrite(fileTag, sizeof(char), strlen(fileTag), file);
|
||||
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
|
||||
remove(path);
|
||||
|
||||
TEST_ASSERT_NULL(netUnderTest.layers);
|
||||
TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers);
|
||||
}
|
||||
|
||||
void test_clearModelSetsMembersToNull(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
|
||||
netUnderTest = loadModel(path);
|
||||
remove(path);
|
||||
|
||||
TEST_ASSERT_NOT_NULL(netUnderTest.layers);
|
||||
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
|
||||
clearModel(&netUnderTest);
|
||||
TEST_ASSERT_NULL(netUnderTest.layers);
|
||||
TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers);
|
||||
}
|
||||
|
||||
static void someActivation(Matrix *matrix)
|
||||
{
|
||||
for(int i = 0; i < matrix->rows * matrix->cols; i++)
|
||||
{
|
||||
matrix->buffer[i] = fabs(matrix->buffer[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void test_predictReturnsCorrectLabels(void)
|
||||
{
|
||||
const unsigned char expectedLabels[] = {4, 2};
|
||||
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
|
||||
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
|
||||
GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}};
|
||||
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
|
||||
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
|
||||
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
|
||||
Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4};
|
||||
Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2};
|
||||
Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3};
|
||||
MatrixType biasBuffer1[] = {200, 0};
|
||||
MatrixType biasBuffer2[] = {0, -100, 0};
|
||||
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
|
||||
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
|
||||
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
|
||||
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
|
||||
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
|
||||
{.weights=weights2, .biases=biases2, .activation=someActivation}, \
|
||||
{.weights=weights3, .biases=biases3, .activation=someActivation}};
|
||||
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
|
||||
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
||||
TEST_ASSERT_NOT_NULL(predictedLabels);
|
||||
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
|
||||
TEST_ASSERT_EQUAL_UINT8_ARRAY(expectedLabels, predictedLabels, n);
|
||||
free(predictedLabels);
|
||||
}
|
||||
|
||||
void setUp(void) {
|
||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||
}
|
||||
|
||||
void tearDown(void) {
|
||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
UNITY_BEGIN();
|
||||
|
||||
printf("\n============================\nNeural network tests\n============================\n");
|
||||
RUN_TEST(test_loadModelReturnsCorrectNumberOfLayers);
|
||||
RUN_TEST(test_loadModelReturnsCorrectWeightDimensions);
|
||||
RUN_TEST(test_loadModelReturnsCorrectBiasDimensions);
|
||||
RUN_TEST(test_loadModelReturnsCorrectWeights);
|
||||
RUN_TEST(test_loadModelReturnsCorrectBiases);
|
||||
RUN_TEST(test_loadModelFailsOnWrongFileTag);
|
||||
RUN_TEST(test_clearModelSetsMembersToNull);
|
||||
RUN_TEST(test_predictReturnsCorrectLabels);
|
||||
|
||||
return UNITY_END();
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user