#include #include #include #include #include "./unity/unity.h" #include "neuralNetwork.h" // --- Implementierung der Hilfsfunktion --- static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) { FILE *file = fopen(path, "wb"); if (file == NULL) { return; } // 1. Header schreiben (ohne Nullterminator) const char *fileHeader = "__info2_neural_network_file_format__"; fwrite(fileHeader, sizeof(char), strlen(fileHeader), file); if (nn.numberOfLayers > 0) { // 2. Input-Dimension der ersten Schicht schreiben (Spalten der ersten Gewichtsmatrix) int inputDim = nn.layers[0].weights.cols; fwrite(&inputDim, sizeof(int), 1, file); // 3. Durch alle Schichten iterieren for(int i = 0; i < nn.numberOfLayers; i++) { // Output-Dimension der aktuellen Schicht schreiben (Zeilen der Gewichtsmatrix) int outputDim = nn.layers[i].weights.rows; fwrite(&outputDim, sizeof(int), 1, file); // 4. Gewichte schreiben int weightsCount = nn.layers[i].weights.rows * nn.layers[i].weights.cols; if (nn.layers[i].weights.buffer != NULL) { fwrite(nn.layers[i].weights.buffer, sizeof(MatrixType), weightsCount, file); } // 5. Biases schreiben int biasCount = nn.layers[i].biases.rows * nn.layers[i].biases.cols; if (nn.layers[i].biases.buffer != NULL) { fwrite(nn.layers[i].biases.buffer, sizeof(MatrixType), biasCount, file); } } } // 6. Abbruchsignal (Dimension 0) schreiben int stopMark = 0; fwrite(&stopMark, sizeof(int), 1, file); fclose(file); } // --- Unit Tests --- void test_loadModelReturnsCorrectNumberOfLayers(void) { const char *path = "some__nn_test_file.info2"; MatrixType buffer1[] = {1, 2, 3, 4, 5, 6}; MatrixType buffer2[] = {1, 2, 3, 4, 5, 6}; Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2}; Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3}; MatrixType buffer3[] = {1, 2, 3}; MatrixType buffer4[] = {1, 2}; Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1}; Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1}; Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}}; NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2}; NeuralNetwork netUnderTest; prepareNeuralNetworkFile(path, expectedNet); netUnderTest = loadModel(path); remove(path); TEST_ASSERT_EQUAL_INT(expectedNet.numberOfLayers, netUnderTest.numberOfLayers); clearModel(&netUnderTest); } void test_loadModelReturnsCorrectWeightDimensions(void) { const char *path = "some__nn_test_file.info2"; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; MatrixType biasBuffer[] = {7, 8, 9}; Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Layer layers[] = {{.weights=weights, .biases=biases}}; NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork netUnderTest; prepareNeuralNetworkFile(path, expectedNet); netUnderTest = loadModel(path); remove(path); TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0); TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows); TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols); clearModel(&netUnderTest); } void test_loadModelReturnsCorrectBiasDimensions(void) { const char *path = "some__nn_test_file.info2"; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; MatrixType biasBuffer[] = {7, 8, 9}; Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Layer layers[] = {{.weights=weights, .biases=biases}}; NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork netUnderTest; prepareNeuralNetworkFile(path, expectedNet); netUnderTest = loadModel(path); remove(path); TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0); TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.rows, netUnderTest.layers[0].biases.rows); TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.cols, netUnderTest.layers[0].biases.cols); clearModel(&netUnderTest); } void test_loadModelReturnsCorrectWeights(void) { const char *path = "some__nn_test_file.info2"; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; MatrixType biasBuffer[] = {7, 8, 9}; Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Layer layers[] = {{.weights=weights, .biases=biases}}; NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork netUnderTest; prepareNeuralNetworkFile(path, expectedNet); netUnderTest = loadModel(path); remove(path); TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0); TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows); TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols); int n = netUnderTest.layers[0].weights.rows * netUnderTest.layers[0].weights.cols; TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].weights.buffer, netUnderTest.layers[0].weights.buffer, n); clearModel(&netUnderTest); } void test_loadModelReturnsCorrectBiases(void) { const char *path = "some__nn_test_file.info2"; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; MatrixType biasBuffer[] = {7, 8, 9}; Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Layer layers[] = {{.weights=weights, .biases=biases}}; NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork netUnderTest; prepareNeuralNetworkFile(path, expectedNet); netUnderTest = loadModel(path); remove(path); TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0); TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows); TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols); int n = netUnderTest.layers[0].biases.rows * netUnderTest.layers[0].biases.cols; TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].biases.buffer, netUnderTest.layers[0].biases.buffer, n); clearModel(&netUnderTest); } void test_loadModelFailsOnWrongFileTag(void) { const char *path = "some_nn_test_file.info2"; NeuralNetwork netUnderTest; FILE *file = fopen(path, "wb"); if(file != NULL) { const char *fileTag = "info2_neural_network_file_format"; fwrite(fileTag, sizeof(char), strlen(fileTag), file); fclose(file); } netUnderTest = loadModel(path); remove(path); TEST_ASSERT_NULL(netUnderTest.layers); TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers); } void test_clearModelSetsMembersToNull(void) { const char *path = "some__nn_test_file.info2"; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; MatrixType biasBuffer[] = {7, 8, 9}; Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Layer layers[] = {{.weights=weights, .biases=biases}}; NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork netUnderTest; prepareNeuralNetworkFile(path, expectedNet); netUnderTest = loadModel(path); remove(path); TEST_ASSERT_NOT_NULL(netUnderTest.layers); TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0); clearModel(&netUnderTest); TEST_ASSERT_NULL(netUnderTest.layers); TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers); } static void someActivation(Matrix *matrix) { if (matrix == NULL || matrix->buffer == NULL) return; for(int i = 0; i < matrix->rows * matrix->cols; i++) { matrix->buffer[i] = fabs(matrix->buffer[i]); } } void test_predictReturnsCorrectLabels(void) { const unsigned char expectedLabels[] = {4, 2}; GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17}; GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128}; GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}}; // Wir nutzen explizite Casts auf MatrixType, um sicherzustellen, dass die Typen stimmen // (besonders wichtig, falls MatrixType double ist, aber hier Ints stehen) MatrixType weightsBuffer1[] = {(MatrixType)1, (MatrixType)-2, (MatrixType)3, (MatrixType)-4, (MatrixType)5, (MatrixType)-6, (MatrixType)7, (MatrixType)-8}; MatrixType weightsBuffer2[] = {(MatrixType)-9, (MatrixType)10, (MatrixType)11, (MatrixType)12, (MatrixType)13, (MatrixType)14}; MatrixType weightsBuffer3[] = {(MatrixType)-15, (MatrixType)16, (MatrixType)17, (MatrixType)18, (MatrixType)-19, (MatrixType)20, (MatrixType)21, (MatrixType)22, (MatrixType)23, (MatrixType)-24, (MatrixType)25, (MatrixType)26, (MatrixType)27, (MatrixType)-28, (MatrixType)-29}; Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4}; Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2}; Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3}; MatrixType biasBuffer1[] = {(MatrixType)200, (MatrixType)0}; MatrixType biasBuffer2[] = {(MatrixType)0, (MatrixType)-100, (MatrixType)0}; MatrixType biasBuffer3[] = {(MatrixType)0, (MatrixType)-1000, (MatrixType)0, (MatrixType)2000, (MatrixType)0}; Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1}; Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1}; Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1}; Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \ {.weights=weights2, .biases=biases2, .activation=someActivation}, \ {.weights=weights3, .biases=biases3, .activation=someActivation}}; NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3}; unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2); TEST_ASSERT_NOT_NULL(predictedLabels); int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0])); TEST_ASSERT_EQUAL_UINT8_ARRAY(expectedLabels, predictedLabels, n); free(predictedLabels); } void setUp(void) { // Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden } void tearDown(void) { // Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden } int main() { UNITY_BEGIN(); printf("\n============================\nNeural network tests\n============================\n"); RUN_TEST(test_loadModelReturnsCorrectNumberOfLayers); RUN_TEST(test_loadModelReturnsCorrectWeightDimensions); RUN_TEST(test_loadModelReturnsCorrectBiasDimensions); RUN_TEST(test_loadModelReturnsCorrectWeights); RUN_TEST(test_loadModelReturnsCorrectBiases); RUN_TEST(test_loadModelFailsOnWrongFileTag); RUN_TEST(test_clearModelSetsMembersToNull); RUN_TEST(test_predictReturnsCorrectLabels); return UNITY_END(); }