#include "system/task_fft.h" #include "system/data_channel.h" #include "system/Complex.h" #include "system/float_word.h" #include #include #include void fft_radix4(complex float *x) { int n = DATA_CHANNEL_DEPTH; int stages = log(n) / log(4); // Anzahl der FFT-Stufen // Bit-Reversal-Rearrangement (Umordnung der Daten für FFT) for (int i = 0; i < n; i++) { int rev = 0, num = i; for (int bit = 0; bit < stages; bit++) { rev = rev * 4 + (num % 4); //printf("i: %d, rev: %d\n", i, rev); num /= 4; } if (i < rev) { complex float temp = x[i]; x[i] = x[rev]; x[rev] = temp; } } // Radix-4 Butterfly-Berechnung for (int s = 1; s <= stages; s++) { int m = pow(4, s); // Gruppengröße (4^s) int quarter_m = m / 4; // Viertel der Gruppengröße float theta = -2.0f * M_PI / m; // Grundwinkel der Wurzeln der Einheit //printf("Stage: %d, m: %d, theta: %f\n", s, m, theta); for (int k = 0; k < n; k += m) { // Iteration über Gruppen for (int j = 0; j < quarter_m; j++) { // Innerhalb der Gruppe // Wurzeln der Einheit complex float w0 = 1.0f; // Wurzel für j = 0 complex float w1 = cexpf(I * theta * j); // Wurzel für j = 1 complex float w2 = cexpf(I * theta * 2 * j); // Wurzel für j = 2 complex float w3 = cexpf(I * theta * 3 * j); // Wurzel für j = 3 // Lade die Werte aus der Gruppe complex float t0 = x[k + j]; complex float t1 = x[k + j + quarter_m] * w1; complex float t2 = x[k + j + 2 * quarter_m] * w2; complex float t3 = x[k + j + 3 * quarter_m] * w3; //printf("w1: %f + %fi, w2: %f + %fi, w3: %f + %fi\n", crealf(w1), cimagf(w1), crealf(w2), cimagf(w2), crealf(w3), cimagf(w3)); //printf("Before: t0: %f + %fi, t1: %f + %fi, t2: %f + %fi, t3: %f + %fi\n", crealf(t0), cimagf(t0), crealf(t1), cimagf(t1), crealf(t2), cimagf(t2), crealf(t3), cimagf(t3)); // Butterfly-Operationen x[k + j] = t0 + t1 + t2 + t3; x[k + j + quarter_m] = t0 - t1 + I * (t3 - t2); x[k + j + 2 * quarter_m] = t0 - t2 + t1 - t3; x[k + j + 3 * quarter_m] = t0 - t1 - I * (t3 - t2); //printf("After: x[%d]: %f + %fi, x[%d]: %f + %fi\n", k + j, crealf(x[k + j]), cimagf(x[k + j]), k + j + quarter_m, crealf(x[k + j + quarter_m]), cimagf(x[k + j + quarter_m])); } } } } int task_fft_run(void *task) { fft_config *config = (fft_config *)task; complex float x[DATA_CHANNEL_DEPTH]; float c[DATA_CHANNEL_DEPTH]; for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) { float a; data_channel_read(config->base.sources[0], (uint32_t *) &a); x[i] = a; //printf("Input x[%d] = %f + %fi\n", i, crealf(x[i]), cimagf(x[i])); } fft_radix4(x); for (uint32_t i = 0; i < DATA_CHANNEL_DEPTH; ++i) { //printf("Output complex x[%d] = %f + %fi\n", i, crealf(x[i]), cimagf(x[i])); c[i] = sqrt(pow(crealf(x[i]), 2) + pow(cimagf(x[i]), 2)); // Betrag if (i == 0) c[i] = c[i] * 1/DATA_CHANNEL_DEPTH; // Sklaierung else c[i] = c[i] * 2/DATA_CHANNEL_DEPTH; // Sklaierung printf("Output Magnitude skaliert c[%d] = %f\n", i, c [i]); float_word output; output.value = c[i]; data_channel_write(config->base.sink, output.word); } return 0; }