|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- from copy import deepcopy
-
- import torch
- import torch.nn as nn
- import torch.optim as optim
- import torch.optim.lr_scheduler as lr_scheduler
- from torch.utils.data import DataLoader
-
- from common.common import parse_args
- import models.classifier as C
- from datasets import get_dataset, get_superclass_list, get_subclass_dataset
- from utils.utils import load_checkpoint
-
- P = parse_args()
-
- ### Set torch device ###
-
- if torch.cuda.is_available():
- torch.cuda.set_device(P.local_rank)
- device = torch.device(f"cuda" if torch.cuda.is_available() else "cpu")
-
- P.n_gpus = torch.cuda.device_count()
-
- if P.n_gpus > 1:
- import apex
- import torch.distributed as dist
- from torch.utils.data.distributed import DistributedSampler
-
- P.multi_gpu = True
- torch.distributed.init_process_group(
- 'nccl',
- init_method='env://',
- world_size=P.n_gpus,
- rank=P.local_rank,
- )
- else:
- P.multi_gpu = False
-
- ### only use one ood_layer while training
- P.ood_layer = P.ood_layer[0]
-
- ### Initialize dataset ###
- train_set, test_set, image_size, n_classes = get_dataset(P, dataset=P.dataset)
- P.image_size = image_size
- P.n_classes = n_classes
-
- if P.one_class_idx is not None:
- cls_list = get_superclass_list(P.dataset)
- P.n_superclasses = len(cls_list)
-
- full_test_set = deepcopy(test_set) # test set of full classes
- train_set = get_subclass_dataset(train_set, classes=cls_list[P.one_class_idx])
- test_set = get_subclass_dataset(test_set, classes=cls_list[P.one_class_idx])
-
- kwargs = {'pin_memory': False, 'num_workers': 2}
-
- if P.multi_gpu:
- train_sampler = DistributedSampler(train_set, num_replicas=P.n_gpus, rank=P.local_rank)
- test_sampler = DistributedSampler(test_set, num_replicas=P.n_gpus, rank=P.local_rank)
- train_loader = DataLoader(train_set, sampler=train_sampler, batch_size=P.batch_size, **kwargs)
- test_loader = DataLoader(test_set, sampler=test_sampler, batch_size=P.test_batch_size, **kwargs)
- else:
- train_loader = DataLoader(train_set, shuffle=True, batch_size=P.batch_size, **kwargs)
- test_loader = DataLoader(test_set, shuffle=False, batch_size=P.test_batch_size, **kwargs)
-
- if P.ood_dataset is None:
- if P.one_class_idx is not None:
- P.ood_dataset = list(range(P.n_superclasses))
- P.ood_dataset.pop(P.one_class_idx)
- elif P.dataset == 'cifar10':
- P.ood_dataset = ['svhn', 'lsun_resize', 'imagenet_resize', 'lsun_fix', 'imagenet_fix', 'cifar100', 'interp']
- elif P.dataset == 'imagenet':
- P.ood_dataset = ['cub', 'stanford_dogs', 'flowers102']
-
- ood_test_loader = dict()
- for ood in P.ood_dataset:
- if ood == 'interp':
- ood_test_loader[ood] = None # dummy loader
- continue
-
- if P.one_class_idx is not None:
- ood_test_set = get_subclass_dataset(full_test_set, classes=cls_list[ood])
- ood = f'one_class_{ood}' # change save name
- else:
- ood_test_set = get_dataset(P, dataset=ood, test_only=True, image_size=P.image_size)
-
- if P.multi_gpu:
- ood_sampler = DistributedSampler(ood_test_set, num_replicas=P.n_gpus, rank=P.local_rank)
- ood_test_loader[ood] = DataLoader(ood_test_set, sampler=ood_sampler, batch_size=P.test_batch_size, **kwargs)
- else:
- ood_test_loader[ood] = DataLoader(ood_test_set, shuffle=False, batch_size=P.test_batch_size, **kwargs)
-
- ### Initialize model ###
-
- simclr_aug = C.get_simclr_augmentation(P, image_size=P.image_size).to(device)
- P.shift_trans, P.K_shift = C.get_shift_module(P, eval=True)
- P.shift_trans = P.shift_trans.to(device)
-
- model = C.get_classifier(P.model, n_classes=P.n_classes).to(device)
- model = C.get_shift_classifer(model, P.K_shift).to(device)
-
- criterion = nn.CrossEntropyLoss().to(device)
-
- if P.optimizer == 'sgd':
- optimizer = optim.SGD(model.parameters(), lr=P.lr_init, momentum=0.9, weight_decay=P.weight_decay)
- lr_decay_gamma = 0.1
- elif P.optimizer == 'lars':
- from torchlars import LARS
- base_optimizer = optim.SGD(model.parameters(), lr=P.lr_init, momentum=0.9, weight_decay=P.weight_decay)
- optimizer = LARS(base_optimizer, eps=1e-8, trust_coef=0.001)
- lr_decay_gamma = 0.1
- else:
- raise NotImplementedError()
-
- if P.lr_scheduler == 'cosine':
- scheduler = lr_scheduler.CosineAnnealingLR(optimizer, P.epochs)
- elif P.lr_scheduler == 'step_decay':
- milestones = [int(0.5 * P.epochs), int(0.75 * P.epochs)]
- scheduler = lr_scheduler.MultiStepLR(optimizer, gamma=lr_decay_gamma, milestones=milestones)
- else:
- raise NotImplementedError()
-
- from training.scheduler import GradualWarmupScheduler
- scheduler_warmup = GradualWarmupScheduler(optimizer, multiplier=10.0, total_epoch=P.warmup, after_scheduler=scheduler)
-
- if P.resume_path is not None:
- resume = True
- model_state, optim_state, config = load_checkpoint(P.resume_path, mode='last')
- model.load_state_dict(model_state, strict=not P.no_strict)
- optimizer.load_state_dict(optim_state)
- start_epoch = config['epoch']
- best = config['best']
- error = 100.0
- else:
- resume = False
- start_epoch = 1
- best = 100.0
- error = 100.0
-
- if P.mode == 'sup_linear' or P.mode == 'sup_CSI_linear':
- assert P.load_path is not None
- checkpoint = torch.load(P.load_path)
- model.load_state_dict(checkpoint, strict=not P.no_strict)
-
- if P.multi_gpu:
- simclr_aug = apex.parallel.DistributedDataParallel(simclr_aug, delay_allreduce=True)
- model = apex.parallel.convert_syncbn_model(model)
- model = apex.parallel.DistributedDataParallel(model, delay_allreduce=True)
|