|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748 |
- from abc import *
- import torch.nn as nn
-
-
- class BaseModel(nn.Module, metaclass=ABCMeta):
- def __init__(self, last_dim, num_classes=10, simclr_dim=128):
- super(BaseModel, self).__init__()
- self.linear = nn.Linear(last_dim, num_classes)
- self.simclr_layer = nn.Sequential(
- nn.Linear(last_dim, last_dim),
- nn.ReLU(),
- nn.Linear(last_dim, simclr_dim),
- )
- self.shift_cls_layer = nn.Linear(last_dim, 2)
- self.joint_distribution_layer = nn.Linear(last_dim, 4 * num_classes)
-
- @abstractmethod
- def penultimate(self, inputs, all_features=False):
- pass
-
- def forward(self, inputs, penultimate=False, simclr=False, shift=False, joint=False):
- _aux = {}
- _return_aux = False
-
- features = self.penultimate(inputs)
-
- output = self.linear(features)
-
- if penultimate:
- _return_aux = True
- _aux['penultimate'] = features
-
- if simclr:
- _return_aux = True
- _aux['simclr'] = self.simclr_layer(features)
-
- if shift:
- _return_aux = True
- _aux['shift'] = self.shift_cls_layer(features)
-
- if joint:
- _return_aux = True
- _aux['joint'] = self.joint_distribution_layer(features)
-
- if _return_aux:
- return output, _aux
-
- return output
|