|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189 |
- '''ResNet in PyTorch.
- BasicBlock and Bottleneck module is from the original ResNet paper:
- [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
- Deep Residual Learning for Image Recognition. arXiv:1512.03385
- PreActBlock and PreActBottleneck module is from the later paper:
- [2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
- Identity Mappings in Deep Residual Networks. arXiv:1603.05027
- '''
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
-
- from models.base_model import BaseModel
- from models.transform_layers import NormalizeLayer
- from torch.nn.utils import spectral_norm
-
- def conv3x3(in_planes, out_planes, stride=1):
- return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
-
-
- class BasicBlock(nn.Module):
- expansion = 1
-
- def __init__(self, in_planes, planes, stride=1):
- super(BasicBlock, self).__init__()
- self.conv1 = conv3x3(in_planes, planes, stride)
- self.conv2 = conv3x3(planes, planes)
- self.bn1 = nn.BatchNorm2d(planes)
- self.bn2 = nn.BatchNorm2d(planes)
-
- self.shortcut = nn.Sequential()
- if stride != 1 or in_planes != self.expansion*planes:
- self.shortcut = nn.Sequential(
- nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
- nn.BatchNorm2d(self.expansion*planes)
- )
-
- def forward(self, x):
- out = F.relu(self.bn1(self.conv1(x)))
- out = self.bn2(self.conv2(out))
- out += self.shortcut(x)
- out = F.relu(out)
- return out
-
-
- class PreActBlock(nn.Module):
- '''Pre-activation version of the BasicBlock.'''
- expansion = 1
-
- def __init__(self, in_planes, planes, stride=1):
- super(PreActBlock, self).__init__()
- self.conv1 = conv3x3(in_planes, planes, stride)
- self.conv2 = conv3x3(planes, planes)
- self.bn1 = nn.BatchNorm2d(in_planes)
- self.bn2 = nn.BatchNorm2d(planes)
-
- self.shortcut = nn.Sequential()
- if stride != 1 or in_planes != self.expansion*planes:
- self.shortcut = nn.Sequential(
- nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False)
- )
-
- def forward(self, x):
- out = F.relu(self.bn1(x))
- shortcut = self.shortcut(out)
- out = self.conv1(out)
- out = self.conv2(F.relu(self.bn2(out)))
- out += shortcut
- return out
-
-
- class Bottleneck(nn.Module):
- expansion = 4
-
- def __init__(self, in_planes, planes, stride=1):
- super(Bottleneck, self).__init__()
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
- self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
- self.bn1 = nn.BatchNorm2d(planes)
- self.bn2 = nn.BatchNorm2d(planes)
- self.bn3 = nn.BatchNorm2d(self.expansion * planes)
-
- self.shortcut = nn.Sequential()
- if stride != 1 or in_planes != self.expansion*planes:
- self.shortcut = nn.Sequential(
- nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
- nn.BatchNorm2d(self.expansion*planes)
- )
-
- def forward(self, x):
- out = F.relu(self.bn1(self.conv1(x)))
- out = F.relu(self.bn2(self.conv2(out)))
- out = self.bn3(self.conv3(out))
- out += self.shortcut(x)
- out = F.relu(out)
- return out
-
-
- class PreActBottleneck(nn.Module):
- '''Pre-activation version of the original Bottleneck module.'''
- expansion = 4
-
- def __init__(self, in_planes, planes, stride=1):
- super(PreActBottleneck, self).__init__()
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
- self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
- self.bn1 = nn.BatchNorm2d(in_planes)
- self.bn2 = nn.BatchNorm2d(planes)
- self.bn3 = nn.BatchNorm2d(planes)
-
- self.shortcut = nn.Sequential()
- if stride != 1 or in_planes != self.expansion*planes:
- self.shortcut = nn.Sequential(
- nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False)
- )
-
- def forward(self, x):
- out = F.relu(self.bn1(x))
- shortcut = self.shortcut(out)
- out = self.conv1(out)
- out = self.conv2(F.relu(self.bn2(out)))
- out = self.conv3(F.relu(self.bn3(out)))
- out += shortcut
- return out
-
-
- class ResNet(BaseModel):
- def __init__(self, block, num_blocks, num_classes=10):
- last_dim = 512 * block.expansion
- super(ResNet, self).__init__(last_dim, num_classes)
-
- self.in_planes = 64
- self.last_dim = last_dim
-
- self.normalize = NormalizeLayer()
-
- self.conv1 = conv3x3(3, 64)
- self.bn1 = nn.BatchNorm2d(64)
-
- self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
- self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
- self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
- self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
-
- def _make_layer(self, block, planes, num_blocks, stride):
- strides = [stride] + [1]*(num_blocks-1)
- layers = []
- for stride in strides:
- layers.append(block(self.in_planes, planes, stride))
- self.in_planes = planes * block.expansion
- return nn.Sequential(*layers)
-
- def penultimate(self, x, all_features=False):
- out_list = []
-
- out = self.normalize(x)
- out = self.conv1(out)
- out = self.bn1(out)
- out = F.relu(out)
- out_list.append(out)
-
- out = self.layer1(out)
- out_list.append(out)
- out = self.layer2(out)
- out_list.append(out)
- out = self.layer3(out)
- out_list.append(out)
- out = self.layer4(out)
- out_list.append(out)
-
- out = F.avg_pool2d(out, 4)
- out = out.view(out.size(0), -1)
-
- if all_features:
- return out, out_list
- else:
- return out
-
-
- def ResNet18(num_classes):
- return ResNet(BasicBlock, [2,2,2,2], num_classes=num_classes)
-
- def ResNet34(num_classes):
- return ResNet(BasicBlock, [3,4,6,3], num_classes=num_classes)
-
- def ResNet50(num_classes):
- return ResNet(Bottleneck, [3,4,6,3], num_classes=num_classes)
|