|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- import time
-
- import torch.optim
-
- import models.transform_layers as TL
- from training.contrastive_loss import get_similarity_matrix, NT_xent
- from utils.utils import AverageMeter, normalize
-
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- hflip = TL.HorizontalFlipLayer().to(device)
-
-
- def train(P, epoch, model, criterion, optimizer, scheduler, loader, logger=None,
- simclr_aug=None, linear=None, linear_optim=None):
-
- assert simclr_aug is not None
- assert P.sim_lambda == 1.0
-
- if logger is None:
- log_ = print
- else:
- log_ = logger.log
-
- batch_time = AverageMeter()
- data_time = AverageMeter()
-
- losses = dict()
- losses['cls'] = AverageMeter()
- losses['sim'] = AverageMeter()
-
- check = time.time()
- for n, (images, labels) in enumerate(loader):
- model.train()
- count = n * P.n_gpus # number of trained samples
-
- data_time.update(time.time() - check)
- check = time.time()
-
- ### SimCLR loss ###
- if P.dataset != 'imagenet':
- batch_size = images.size(0)
- images = images.to(device)
- images_pair = hflip(images.repeat(2, 1, 1, 1)) # 2B with hflip
- else:
- batch_size = images[0].size(0)
- images1, images2 = images[0].to(device), images[1].to(device)
- images_pair = torch.cat([images1, images2], dim=0) # 2B
-
- labels = labels.to(device)
-
- images_pair = simclr_aug(images_pair) # transform
-
- _, outputs_aux = model(images_pair, simclr=True, penultimate=True)
-
- simclr = normalize(outputs_aux['simclr']) # normalize
- sim_matrix = get_similarity_matrix(simclr, multi_gpu=P.multi_gpu)
- loss_sim = NT_xent(sim_matrix, temperature=0.5) * P.sim_lambda
-
- ### total loss ###
- loss = loss_sim
-
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- scheduler.step(epoch - 1 + n / len(loader))
- lr = optimizer.param_groups[0]['lr']
-
- batch_time.update(time.time() - check)
-
- ### Post-processing stuffs ###
- simclr_norm = outputs_aux['simclr'].norm(dim=1).mean()
-
- ### Linear evaluation ###
- outputs_linear_eval = linear(outputs_aux['penultimate'].detach())
- loss_linear = criterion(outputs_linear_eval, labels.repeat(2))
-
- linear_optim.zero_grad()
- loss_linear.backward()
- linear_optim.step()
-
- ### Log losses ###
- losses['cls'].update(0, batch_size)
- losses['sim'].update(loss_sim.item(), batch_size)
-
- if count % 50 == 0:
- log_('[Epoch %3d; %3d] [Time %.3f] [Data %.3f] [LR %.5f]\n'
- '[LossC %f] [LossSim %f]' %
- (epoch, count, batch_time.value, data_time.value, lr,
- losses['cls'].value, losses['sim'].value))
-
- check = time.time()
-
- log_('[DONE] [Time %.3f] [Data %.3f] [LossC %f] [LossSim %f]' %
- (batch_time.average, data_time.average,
- losses['cls'].average, losses['sim'].average))
-
- if logger is not None:
- logger.scalar_summary('train/loss_cls', losses['cls'].average, epoch)
- logger.scalar_summary('train/loss_sim', losses['sim'].average, epoch)
- logger.scalar_summary('train/batch_time', batch_time.average, epoch)
|