import torch import torch.distributed as dist import diffdist.functional as distops def get_similarity_matrix(outputs, chunk=2, multi_gpu=False): ''' Compute similarity matrix - outputs: (B', d) tensor for B' = B * chunk - sim_matrix: (B', B') tensor ''' if multi_gpu: outputs_gathered = [] for out in outputs.chunk(chunk): gather_t = [torch.empty_like(out) for _ in range(dist.get_world_size())] gather_t = torch.cat(distops.all_gather(gather_t, out)) outputs_gathered.append(gather_t) outputs = torch.cat(outputs_gathered) sim_matrix = torch.mm(outputs, outputs.t()) # (B', d), (d, B') -> (B', B') return sim_matrix def NT_xent(sim_matrix, temperature=0.5, chunk=2, eps=1e-8): ''' Compute NT_xent loss - sim_matrix: (B', B') tensor for B' = B * chunk (first 2B are pos samples) ''' device = sim_matrix.device B = sim_matrix.size(0) // chunk # B = B' / chunk eye = torch.eye(B * chunk).to(device) # (B', B') sim_matrix = torch.exp(sim_matrix / temperature) * (1 - eye) # remove diagonal denom = torch.sum(sim_matrix, dim=1, keepdim=True) sim_matrix = -torch.log(sim_matrix / (denom + eps) + eps) # loss matrix loss = torch.sum(sim_matrix[:B, B:].diag() + sim_matrix[B:, :B].diag()) / (2 * B) return loss def Supervised_NT_xent(sim_matrix, labels, temperature=0.5, chunk=2, eps=1e-8, multi_gpu=False): ''' Compute NT_xent loss - sim_matrix: (B', B') tensor for B' = B * chunk (first 2B are pos samples) ''' device = sim_matrix.device if multi_gpu: gather_t = [torch.empty_like(labels) for _ in range(dist.get_world_size())] labels = torch.cat(distops.all_gather(gather_t, labels)) labels = labels.repeat(2) logits_max, _ = torch.max(sim_matrix, dim=1, keepdim=True) sim_matrix = sim_matrix - logits_max.detach() B = sim_matrix.size(0) // chunk # B = B' / chunk eye = torch.eye(B * chunk).to(device) # (B', B') sim_matrix = torch.exp(sim_matrix / temperature) * (1 - eye) # remove diagonal denom = torch.sum(sim_matrix, dim=1, keepdim=True) sim_matrix = -torch.log(sim_matrix / (denom + eps) + eps) # loss matrix labels = labels.contiguous().view(-1, 1) Mask = torch.eq(labels, labels.t()).float().to(device) #Mask = eye * torch.stack([labels == labels[i] for i in range(labels.size(0))]).float().to(device) Mask = Mask / (Mask.sum(dim=1, keepdim=True) + eps) loss = torch.sum(Mask * sim_matrix) / (2 * B) return loss