import time import torch.optim import models.transform_layers as TL from training.contrastive_loss import get_similarity_matrix, NT_xent from utils.utils import AverageMeter, normalize device = torch.device(f"cuda" if torch.cuda.is_available() else "cpu") hflip = TL.HorizontalFlipLayer().to(device) def train(P, epoch, model, criterion, optimizer, scheduler, loader, logger=None, simclr_aug=None, linear=None, linear_optim=None): assert simclr_aug is not None assert P.sim_lambda == 1.0 # to avoid mistake assert P.K_shift > 1 if logger is None: log_ = print else: log_ = logger.log batch_time = AverageMeter() data_time = AverageMeter() losses = dict() losses['cls'] = AverageMeter() losses['sim'] = AverageMeter() losses['shift'] = AverageMeter() check = time.time() for n, (images, labels) in enumerate(loader): model.train() count = n * P.n_gpus # number of trained samples data_time.update(time.time() - check) check = time.time() ### SimCLR loss ### if P.dataset != 'imagenet' and P.dataset != 'CNMC' and P.dataset != 'CNMC_grayscale': batch_size = images.size(0) images = images.to(device) images1, images2 = hflip(images.repeat(2, 1, 1, 1)).chunk(2) # hflip else: batch_size = images[0].size(0) images1, images2 = images[0].to(device), images[1].to(device) labels = labels.to(device) images1 = torch.cat([P.shift_trans(images1, k) for k in range(P.K_shift)]) images2 = torch.cat([P.shift_trans(images2, k) for k in range(P.K_shift)]) shift_labels = torch.cat([torch.ones_like(labels) * k for k in range(P.K_shift)], 0) # B -> 4B shift_labels = shift_labels.repeat(2) images_pair = torch.cat([images1, images2], dim=0) # 8B images_pair = simclr_aug(images_pair) # transform _, outputs_aux = model(images_pair, simclr=True, penultimate=True, shift=True) simclr = normalize(outputs_aux['simclr']) # normalize sim_matrix = get_similarity_matrix(simclr, multi_gpu=P.multi_gpu) loss_sim = NT_xent(sim_matrix, temperature=0.5) * P.sim_lambda loss_shift = criterion(outputs_aux['shift'], shift_labels) ### total loss ### loss = loss_sim + loss_shift optimizer.zero_grad() loss.backward() optimizer.step() scheduler.step(epoch - 1 + n / len(loader)) lr = optimizer.param_groups[0]['lr'] batch_time.update(time.time() - check) ### Post-processing stuffs ### simclr_norm = outputs_aux['simclr'].norm(dim=1).mean() penul_1 = outputs_aux['penultimate'][:batch_size] penul_2 = outputs_aux['penultimate'][P.K_shift * batch_size: (P.K_shift + 1) * batch_size] outputs_aux['penultimate'] = torch.cat([penul_1, penul_2]) # only use original rotation ### Linear evaluation ### outputs_linear_eval = linear(outputs_aux['penultimate'].detach()) loss_linear = criterion(outputs_linear_eval, labels.repeat(2)) linear_optim.zero_grad() loss_linear.backward() linear_optim.step() losses['cls'].update(0, batch_size) losses['sim'].update(loss_sim.item(), batch_size) losses['shift'].update(loss_shift.item(), batch_size) if count % 50 == 0: log_('[Epoch %3d; %3d] [Time %.3f] [Data %.3f] [LR %.5f]\n' '[LossC %f] [LossSim %f] [LossShift %f]' % (epoch, count, batch_time.value, data_time.value, lr, losses['cls'].value, losses['sim'].value, losses['shift'].value)) log_('[DONE] [Time %.3f] [Data %.3f] [LossC %f] [LossSim %f] [LossShift %f]' % (batch_time.average, data_time.average, losses['cls'].average, losses['sim'].average, losses['shift'].average)) if logger is not None: logger.scalar_summary('train/loss_cls', losses['cls'].average, epoch) logger.scalar_summary('train/loss_sim', losses['sim'].average, epoch) logger.scalar_summary('train/loss_shift', losses['shift'].average, epoch) logger.scalar_summary('train/batch_time', batch_time.average, epoch)