12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- import time
-
- import torch.optim
- import torch.optim.lr_scheduler as lr_scheduler
-
- import models.transform_layers as TL
- from utils.utils import AverageMeter, normalize
-
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- hflip = TL.HorizontalFlipLayer().to(device)
-
-
- def train(P, epoch, model, criterion, optimizer, scheduler, loader, logger=None,
- simclr_aug=None, linear=None, linear_optim=None):
-
- if epoch == 1:
- # define optimizer and save in P (argument)
- milestones = [int(0.6 * P.epochs), int(0.75 * P.epochs), int(0.9 * P.epochs)]
-
- linear_optim = torch.optim.SGD(linear.parameters(),
- lr=1e-1, weight_decay=P.weight_decay)
- P.linear_optim = linear_optim
- P.linear_scheduler = lr_scheduler.MultiStepLR(P.linear_optim, gamma=0.1, milestones=milestones)
-
- if logger is None:
- log_ = print
- else:
- log_ = logger.log
-
- batch_time = AverageMeter()
- data_time = AverageMeter()
-
- losses = dict()
- losses['cls'] = AverageMeter()
-
- check = time.time()
- for n, (images, labels) in enumerate(loader):
- model.eval()
- count = n * P.n_gpus # number of trained samples
-
- data_time.update(time.time() - check)
- check = time.time()
-
- ### SimCLR loss ###
- if P.dataset != 'imagenet':
- batch_size = images.size(0)
- images = images.to(device)
- images = hflip(images) # 2B with hflip
- else:
- batch_size = images[0].size(0)
- images = images[0].to(device)
-
- labels = labels.to(device)
-
- images = simclr_aug(images) # simclr augmentation
- _, outputs_aux = model(images, penultimate=True)
- penultimate = outputs_aux['penultimate'].detach()
-
- outputs = linear(penultimate[0:batch_size]) # only use 0 degree samples for linear eval
-
- loss_ce = criterion(outputs, labels)
-
- ### CE loss ###
- P.linear_optim.zero_grad()
- loss_ce.backward()
- P.linear_optim.step()
-
- ### optimizer learning rate ###
- lr = P.linear_optim.param_groups[0]['lr']
-
- batch_time.update(time.time() - check)
-
- ### Log losses ###
- losses['cls'].update(loss_ce.item(), batch_size)
-
- if count % 50 == 0:
- log_('[Epoch %3d; %3d] [Time %.3f] [Data %.3f] [LR %.5f]\n'
- '[LossC %f]' %
- (epoch, count, batch_time.value, data_time.value, lr,
- losses['cls'].value, ))
- check = time.time()
-
- P.linear_scheduler.step()
-
- log_('[DONE] [Time %.3f] [Data %.3f] [LossC %f]' %
- (batch_time.average, data_time.average,
- losses['cls'].average))
-
- if logger is not None:
- logger.scalar_summary('train/loss_cls', losses['cls'].average, epoch)
- logger.scalar_summary('train/batch_time', batch_time.average, epoch)
|