isbi2019cancer-master/main_manual.py
2022-04-29 19:33:43 +02:00

247 lines
9.1 KiB
Python

import argparse
import os
from collections import defaultdict
import numpy as np
import torch
import torch.nn.functional as F
from sklearn.metrics import roc_auc_score, confusion_matrix, precision_recall_fscore_support, accuracy_score
from tensorboardX import SummaryWriter
from torch.optim.lr_scheduler import StepLR, LambdaLR
from torch.utils.data import DataLoader
from tqdm import tqdm, trange
from dataset import get_dataset, get_tf_train_transform, get_tf_vaild_rot_transform
from model import get_model
from utils import IncrementalAverage, to_device, set_seeds, unique_string, count_parameters
def evaluate(model, valid_loader, class_weights, device):
model.eval()
all_labels = []
all_preds = []
loss_avg = IncrementalAverage()
for img, label in tqdm(valid_loader, leave=False):
img, label = to_device(device, img, label)
bs, nrot, c, h, w = img.size()
with torch.no_grad():
pred = model(img.view(-1, c, h, w))
pred = pred.view(bs, nrot).mean(1)
loss = lossfn(pred, label.to(pred.dtype), class_weights)
all_labels.append(label.cpu())
all_preds.append(pred.cpu())
loss_avg.update(loss.item())
all_labels = torch.cat(all_labels).numpy()
all_preds = torch.cat(all_preds).numpy()
all_preds_binary = all_preds > 0
cm = confusion_matrix(all_labels, all_preds_binary)
auc = roc_auc_score(all_labels, all_preds)
prec, rec, f1, _ = precision_recall_fscore_support(all_labels, all_preds_binary, average='weighted')
return loss_avg.value, cm, auc, prec, rec, f1
def train(model, opt, train_loader, class_weights, device):
model.train()
loss_avg = IncrementalAverage()
for img, label in tqdm(train_loader, leave=False):
img, label = to_device(device, img, label)
pred = model(img)
pred = pred.view(-1)
loss = lossfn(pred, label.to(pred.dtype), class_weights)
loss_avg.update(loss.item())
opt.zero_grad()
loss.backward()
opt.step()
return loss_avg.value
def lossfn(prediction, target, class_weights):
pos_weight = (class_weights[0] / class_weights[1]).expand(len(target))
return F.binary_cross_entropy_with_logits(prediction, target, pos_weight=pos_weight)
def schedule(epoch):
if epoch < 2:
ub = 1
elif epoch < 4:
ub = 0.1
else:
ub = 0.01
return ub
def train_validate(args):
model = get_model().to(args.device)
print("Model parameters:", count_parameters(model))
trainset, validset, validset_subjects, class_weights = get_dataset(args.dataroot,
tf_train=get_tf_train_transform(args.res),
tf_valid=get_tf_vaild_rot_transform(args.res))
class_weights = class_weights.to(args.device)
print(f"Trainset length: {len(trainset)}")
print(f"Validset length: {len(validset)}")
print(f"class_weights = {class_weights}")
train_loader = DataLoader(trainset, batch_size=args.batch_size, num_workers=6, shuffle=True, drop_last=True)
valid_loader = DataLoader(validset, batch_size=args.batch_size, num_workers=6, shuffle=False)
opt = torch.optim.Adam([
{'params': model.paramgroup01(), 'lr': 1e-6},
{'params': model.paramgroup234(), 'lr': 1e-4},
{'params': model.parameters_classifier(), 'lr': 1e-2},
])
scheduler = LambdaLR(opt, lr_lambda=[lambda e: schedule(e),
lambda e: schedule(e),
lambda e: schedule(e)])
summarywriter = SummaryWriter(args.out)
recorded_data = defaultdict(list)
def logged_eval(e):
valid_loss, cm, auc, prec, rec, f1 = evaluate(model, valid_loader, class_weights, args.device)
# Derive some accuracy metrics from confusion matrix
tn, fp, fn, tp = cm.ravel()
acc = (tp + tn) / cm.sum()
acc_hem = tn / (tn + fp)
acc_all = tp / (tp + fn)
print(f"epoch={e} f1={f1:.4f}")
summarywriter.add_scalar('loss/train', train_loss, e)
summarywriter.add_scalar('loss/valid', valid_loss, e)
summarywriter.add_scalar('cm/tn', tn, e)
summarywriter.add_scalar('cm/fp', fp, e)
summarywriter.add_scalar('cm/fn', fn, e)
summarywriter.add_scalar('cm/tp', tp, e)
summarywriter.add_scalar('metrics/precision', prec, e)
summarywriter.add_scalar('metrics/recall', rec, e)
summarywriter.add_scalar('metrics/f1', f1, e)
summarywriter.add_scalar('metrics/auc', auc, e)
summarywriter.add_scalar('acc/acc', acc, e)
summarywriter.add_scalar('acc/hem', acc_hem, e)
summarywriter.add_scalar('acc/all', acc_all, e)
recorded_data['loss_train'].append(train_loss)
recorded_data['loss_valid'].append(valid_loss)
recorded_data['tn'].append(tn)
recorded_data['tn'].append(tn)
recorded_data['fp'].append(fp)
recorded_data['fn'].append(fn)
recorded_data['tp'].append(tp)
recorded_data['precision'].append(prec)
recorded_data['recall'].append(rec)
recorded_data['f1'].append(f1)
recorded_data['auc'].append(auc)
recorded_data['acc'].append(acc)
recorded_data['acc_hem'].append(acc_hem)
recorded_data['acc_all'].append(acc_all)
np.savez(f'{args.out}/results', **recorded_data)
return f1
model = torch.nn.DataParallel(model)
train_loss = np.nan
best_val_f1 = logged_eval(0)
for e in trange(args.epochs, desc='Epoch'):
scheduler.step(e)
train_loss = train(model, opt, train_loader, class_weights, args.device)
val_f1 = logged_eval(e + 1)
if val_f1 > best_val_f1:
print(f"New best model at {val_f1:.6f}")
torch.save(model.state_dict(), f'{args.out}/model.pt')
best_val_f1 = val_f1
summarywriter.close()
subj_acc = evaluate_subj_acc(model, validset, validset_subjects, args.device)
np.savez(f'{args.out}/subj_acc', **subj_acc)
def evaluate_subj_acc(model, dataset, subjects, device):
model.eval()
subj_pred = defaultdict(list)
subj_label = defaultdict(list)
dataloader = DataLoader(dataset, batch_size=1, num_workers=1, shuffle=False)
for (img, cls), subj in tqdm(zip(dataloader, subjects), total=len(subjects), leave=False):
img, cls = to_device(device, img, cls)
bs, nrot, c, h, w = img.size()
with torch.no_grad():
cls_hat = model(img.view(-1, c, h, w))
cls_hat = cls_hat.view(bs, nrot).mean(1)
subj_label[subj].append(cls.cpu())
subj_pred[subj].append(cls_hat.cpu())
for k in subj_label:
subj_label[k] = torch.cat(subj_label[k]).numpy()
subj_pred[k] = torch.cat(subj_pred[k]).numpy() > 0
subj_acc = {}
for k in subj_label:
subj_acc[k] = accuracy_score(subj_label[k], subj_pred[k])
return subj_acc
def train_test(args):
model = get_model().to(args.device)
print("Model parameters:", count_parameters(model))
trainset, class_weights = get_dataset(args.dataroot, folds_train=(0, 1, 2, 3),
folds_valid=None,
tf_train=get_tf_train_transform(args.res),
tf_valid=get_tf_vaild_rot_transform(args.res))
class_weights = class_weights.to(args.device)
print(f"Trainset length: {len(trainset)}")
print(f"class_weights = {class_weights}")
train_loader = DataLoader(trainset, batch_size=args.batch_size, num_workers=6, shuffle=True, drop_last=True)
opt = torch.optim.Adam([
{'params': model.paramgroup01(), 'lr': 1e-6},
{'params': model.paramgroup234(), 'lr': 1e-4},
{'params': model.parameters_classifier(), 'lr': 1e-2},
])
scheduler = LambdaLR(opt, lr_lambda=[lambda e: schedule(e),
lambda e: schedule(e),
lambda e: schedule(e)])
model = torch.nn.DataParallel(model)
for e in trange(args.epochs, desc='Epoch'):
scheduler.step(e)
train(model, opt, train_loader, class_weights, args.device)
torch.save(model.state_dict(), f'{args.out}/model.pt')
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataroot', default='data', help='path to dataset')
parser.add_argument('--batch-size', type=int, default=16)
parser.add_argument('--epochs', type=int, default=6)
parser.add_argument('--seed', default=1, type=int, help='random seed')
parser.add_argument('--device', default='cuda' if torch.cuda.is_available() else 'cpu')
parser.add_argument('--out', default='results', help='output folder')
parser.add_argument('--res', type=int, default='450', help='Desired input resolution')
args = parser.parse_args()
args.out = os.path.join(args.out, unique_string())
return args
if __name__ == '__main__':
args = parse_args()
print(args)
os.makedirs(args.out, exist_ok=True)
set_seeds(args.seed)
torch.backends.cudnn.benchmark = True
train_validate(args)