Funktionsfähig gemacht

This commit is contained in:
Kai Graap 2025-11-17 15:13:47 +01:00
parent 16e918b180
commit 69dfbdf139
4 changed files with 116 additions and 113 deletions

View File

@ -2,6 +2,9 @@
#include "gamematrix.h"
#include "raylib.h"
#include <rlgl.h>
#include <array>
using Mat4 = std::array<std::array<double, 4>, 4>;
struct Vec3
{

View File

@ -3,6 +3,7 @@
#include <array>
#include <stdexcept>
#include <cmath>
#include "gamecube.h"
class gameMatrix
{

View File

@ -1,70 +1,70 @@
#include "gamecube.h"
#include "gamecube.h"
gamecube::gamecube(const Vec3 &pos, Color col)
: position(pos), color(col) {}
gamecube::gamecube(const Vec3 &pos, Color col)
: position(pos), color(col) {}
void gamecube::Update(float flipSpeed)
{
//Tom: Added vars for clarity; replaced old 180.0f, 0.0f
const float MaxRotationAngle = 180.0f;
const float NoRotationAngle = 0.0f;
if (flippingForward)
void gamecube::Update(float flipSpeed)
{
rotation += flipSpeed;
if (rotation >= MaxRotationAngle)
//Tom: Added vars for clarity; replaced old 180.0f, 0.0f
const float MaxRotationAngle = 180.0f;
const float NoRotationAngle = 0.0f;
if (flippingForward)
{
rotation = MaxRotationAngle;
flippingForward = false;
flipped = true;
rotation += flipSpeed;
if (rotation >= MaxRotationAngle)
{
rotation = MaxRotationAngle;
flippingForward = false;
flipped = true;
}
}
else if (flippingBackward)
{
rotation -= flipSpeed;
if (rotation <= NoRotationAngle)
{
rotation = NoRotationAngle;
flippingBackward = false;
flipped = false;
}
}
}
else if (flippingBackward)
void gamecube::FlipForward() { flippingForward = true; }
void gamecube::FlipBackward() { flippingBackward = true; }
bool gamecube::IsFlipped() const { return flipped; }
bool gamecube::IsMatched() const { return matched; }
void gamecube::SetMatched(bool m) { matched = m; }
void gamecube::Draw() const
{
rotation -= flipSpeed;
if (rotation <= NoRotationAngle)
{
rotation = NoRotationAngle;
flippingBackward = false;
flipped = false;
}
rlPushMatrix();
// Matrizen für Rotation und Translation erzeugen
auto matrix_a = gameMatrix::translate({ position.x, position.y, position.z});
auto matrix_b = gameMatrix::rot3D(rotation, 'y');
// Matrizen multiplizieren (Translation * Rotation)
auto model = gameMatrix::matmul(matrix_a, matrix_b);
// transform for raylib matrix
float f[16];
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
f[j * 4 + i] = model[i][j];
rlMultMatrixf(f);
if (rotation < 90.0f)
DrawCube({0,0,0}, 1,1,1, GRAY);
else
DrawCube({0,0,0}, 1,1,1, color);
DrawCubeWires({0,0,0}, 1,1,1, BLACK);
rlPopMatrix();
}
}
void gamecube::FlipForward() { flippingForward = true; }
void gamecube::FlipBackward() { flippingBackward = true; }
bool gamecube::IsFlipped() const { return flipped; }
bool gamecube::IsMatched() const { return matched; }
void gamecube::SetMatched(bool m) { matched = m; }
void gamecube::Draw() const
{
rlPushMatrix();
// Matrizen für Rotation und Translation erzeugen
auto matrix_a = gameMatrix::translate({ position.x, position.y, position.z});
auto matrix_b = gameMatrix::rot3D(rotation, 'y');
// Matrizen multiplizieren (Translation * Rotation)
auto model = gameMatrix::matmul(matrix_a, matrix_b);
// transform for raylib matrix
float f[16];
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
f[j * 4 + i] = model[i][j];
rlMultMatrixf(f);
if (rotation < 90.0f)
DrawCube({0,0,0}, 1,1,1, GRAY);
else
DrawCube({0,0,0}, 1,1,1, color);
DrawCubeWires({0,0,0}, 1,1,1, BLACK);
rlPopMatrix();
}
Vec3 gamecube::GetPosition() const { return position; }
float gamecube::GetRotationY() const { return rotation; }
Vec3 gamecube::GetPosition() const { return position; }
float gamecube::GetRotationY() const { return rotation; }

View File

@ -1,76 +1,75 @@
#include "gamematrix.h"
#include <cmath>
namespace Matrix3D {
// Entfernt: namespace Matrix3D { ... } <-- GEÄNDERT
Mat4 identity() {
Mat4 m{};
for(int i = 0; i < 4; i++) {
for(int j = 0; j < 4; j++) {
m[i][j] = (i == j) ? 1.0 : 0.0;
}
// Implementierungen jetzt als Klassenmethoden von gameMatrix <-- GEÄNDERT
// Optional: identity() als Hilfsmethode hinzugefügt
static std::array<std::array<double,4>,4> identity() { // <-- NEU
std::array<std::array<double,4>,4> m{};
for(int i = 0; i < 4; i++) {
for(int j = 0; j < 4; j++) {
m[i][j] = (i == j) ? 1.0 : 0.0;
}
return m;
}
return m;
}
Mat4 matmul(const Mat4& A, const Mat4& B) {
Mat4 R{};
for(int i = 0; i < 4; i++) {
for(int j = 0; j < 4; j++) {
double sum = 0.0;
for(int k = 0; k < 4; k++) {
sum += A[i][k] * B[k][j];
}
R[i][j] = sum;
// -------------------- matmul --------------------
std::array<std::array<double,4>,4> gameMatrix::matmul( // <-- GEÄNDERT
const std::array<std::array<double,4>,4>& A,
const std::array<std::array<double,4>,4>& B)
{
std::array<std::array<double,4>,4> R{};
for(int i = 0; i < 4; i++) {
for(int j = 0; j < 4; j++) {
double sum = 0.0;
for(int k = 0; k < 4; k++) {
sum += A[i][k] * B[k][j];
}
R[i][j] = sum;
}
return R;
}
return R;
}
Mat4 translate(const Vec3& pos) {
Mat4 t = identity();
t[0][3] = pos.x;
t[1][3] = pos.y;
t[2][3] = pos.z;
return t;
}
// -------------------- translate --------------------
std::array<std::array<double,4>,4> gameMatrix::translate( // <-- GEÄNDERT
const std::array<double,3>& pos)
{
auto t = identity(); // <-- NEU: nutzt die Hilfsmethode
t[0][3] = pos[0];
t[1][3] = pos[1];
t[2][3] = pos[2];
return t;
}
Mat4 rot3D(double angle_deg, char axis) {
Mat4 r = identity();
// -------------------- rot3D --------------------
std::array<std::array<double,4>,4> gameMatrix::rot3D( // <-- GEÄNDERT
double angle_deg, char axis)
{
auto r = identity(); // <-- NEU: nutzt die Hilfsmethode
double rad = angle_deg * M_PI / 180.0;
double c = std::cos(rad);
double s = std::sin(rad);
double rad = angle_deg * M_PI / 180.0;
double c = std::cos(rad);
double s = std::sin(rad);
switch(axis) {
case 'x': case 'X':
r[1][1] = c; r[1][2] = -s;
switch(axis) {
case 'x': case 'X':
r[1][1] = c; r[1][2] = -s;
r[2][1] = s; r[2][2] = c;
break;
case 'y': case 'Y':
r[0][0] = c; r[0][2] = s;
case 'y': case 'Y':
r[0][0] = c; r[0][2] = s;
r[2][0] = -s; r[2][2] = c;
break;
case 'z': case 'Z':
r[0][0] = c; r[0][1] = -s;
case 'z': case 'Z':
r[0][0] = c; r[0][1] = -s;
r[1][0] = s; r[1][1] = c;
break;
}
return r;
}
Vec3 operator*(const Mat4& M, const Vec3& v) {
Vec3 out;
out.x = M[0][0]*v.x + M[0][1]*v.y + M[0][2]*v.z + M[0][3];
out.y = M[1][0]*v.x + M[1][1]*v.y + M[1][2]*v.z + M[1][3];
out.z = M[2][0]*v.x + M[2][1]*v.y + M[2][2]*v.z + M[2][3];
return out;
}
Mat4 operator*(const Mat4& A, const Mat4& B) {
return matmul(A, B);
}
return r;
}