diff --git a/imageInput.c b/imageInput.c index b8bb963..c72388e 100644 --- a/imageInput.c +++ b/imageInput.c @@ -8,6 +8,48 @@ // TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei +static int read_header(FILE *file, unsigned short *count, unsigned short *width, unsigned short *height) +{ + size_t headerLEN = strlen(FILE_HEADER_STRING); + char buffer[BUFFER_SIZE]; + + if (headerLEN >= BUFFER_SIZE) + { + return 0; + } + + if (fread(buffer, 1, headerLEN, file) != headerLEN) + { + return 0; + } + + buffer[headerLEN] = '\0'; + + if (strcmp(buffer, FILE_HEADER_STRING) != 0) + { + return 0; + } + + if (fread(count, sizeof(unsigned short), 1, file) != 1 || fread(width, sizeof(unsigned short), 1, file) != 1 || + fread(height, sizeof(unsigned short), 1, file) != 1) + { + return 0; + } + + return 1; +} + +static int read_single_image(FILE *file, GrayScaleImage *image) +{ + unsigned int number_of_pixel = image->width * image->height; + + if (fread(image->buffer, sizeof(GrayScalePixelType), number_of_pixel, file) != number_of_pixel) // fehler beim lesen + { + return 0; + } + return 1; +} + // TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen GrayScaleImageSeries *readImages(const char *path) { @@ -17,26 +59,9 @@ GrayScaleImageSeries *readImages(const char *path) return 0; } - const size_t headerLEN = strlen(FILE_HEADER_STRING); - char buffer[BUFFER_SIZE]; + unsigned short count, width, height; - if (fread(buffer, 1, headerLEN, file) != headerLEN) - { - fclose(file); - return 0; - } - buffer[headerLEN] = '\0'; - - if (strcmp(buffer, FILE_HEADER_STRING) != 0) - { - fclose(file); - return 0; - } - - unsigned short count, height, width; - - if (fread(&count, sizeof(unsigned short), 1, file) != 1 || fread(&height, sizeof(unsigned short), 1, file) != 1 || - fread(&width, sizeof(unsigned short), 1, file) != 1) + if (!read_header(file, &count, &width, &height)) { fclose(file); return 0; @@ -65,7 +90,7 @@ GrayScaleImageSeries *readImages(const char *path) { series->images[i].width = width; series->images[i].height = height; - series->images[i].buffer = malloc(width * height); + series->images[i].buffer = malloc(width * height * sizeof(GrayScalePixelType)); if (!series->images[i].buffer) { @@ -73,13 +98,8 @@ GrayScaleImageSeries *readImages(const char *path) fclose(file); return 0; } - } - for (int i = 0; i < count; i++) - { - size_t pixel_count = width * height; - - if (fread(series->images[i].buffer, 1, pixel_count, file) != pixel_count) + if (!read_single_image(file, &series->images[i])) { clearSeries(series); fclose(file); @@ -101,17 +121,14 @@ GrayScaleImageSeries *readImages(const char *path) // TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt void clearSeries(GrayScaleImageSeries *series) { - if (series == 0) - return; - - if (series->images) + if (series) { for (int i = 0; i < series->count; i++) { free(series->images[i].buffer); } free(series->images); + free(series->labels); + free(series); } - free(series->labels); - free(series); } \ No newline at end of file diff --git a/imageInputTests.c b/imageInputTests.c index c704271..1863e96 100644 --- a/imageInputTests.c +++ b/imageInputTests.c @@ -54,7 +54,7 @@ void test_readImagesReturnsCorrectImageWidth(void) GrayScaleImageSeries *series = NULL; const unsigned short expectedWidth = 10; const char *path = "testFile.info2"; - prepareImageFile(path, 8, expectedWidth, 2, 1); + prepareImageFile(path, expectedWidth, 8, 2, 1); series = readImages(path); TEST_ASSERT_NOT_NULL(series); TEST_ASSERT_NOT_NULL(series->images); @@ -70,7 +70,7 @@ void test_readImagesReturnsCorrectImageHeight(void) GrayScaleImageSeries *series = NULL; const unsigned short expectedHeight = 10; const char *path = "testFile.info2"; - prepareImageFile(path, expectedHeight, 8, 2, 1); + prepareImageFile(path, 8, expectedHeight, 2, 1); series = readImages(path); TEST_ASSERT_NOT_NULL(series); TEST_ASSERT_NOT_NULL(series->images); @@ -119,6 +119,13 @@ void test_readImagesFailsOnWrongFileTag(void) remove(path); } +// Tests der Hilfsfunktionen + +void test_read_header(void) +{ + +} + void setUp(void) { // Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden } diff --git a/matrix.c b/matrix.c index 5ed4953..5e49fe9 100644 --- a/matrix.c +++ b/matrix.c @@ -138,7 +138,7 @@ Matrix add(const Matrix matrix1, const Matrix matrix2) fprintf(stderr, "Fehler: Matrizen haben unterschiedliche Größen (%u x %u) und (%u x %u)\n", matrix1.rows, matrix1.cols, matrix2.rows, matrix2.cols); - Matrix empty = {0, 0, NULL}; + Matrix empty = {NULL, 0, 0}; return empty; } @@ -149,7 +149,7 @@ Matrix multiply(const Matrix matrix1, const Matrix matrix2) fprintf(stderr, "Fehler: Matrizen der Dimension (%u x %u) und (%u x %u) koennen nicht multipliziert werden\n", matrix1.rows, matrix1.cols, matrix2.rows, matrix2.cols); - Matrix empty = {0, 0, NULL}; + Matrix empty = {NULL, 0, 0}; return empty; } diff --git a/matrix.h b/matrix.h index 9aba013..ace42fa 100644 --- a/matrix.h +++ b/matrix.h @@ -8,9 +8,9 @@ typedef float MatrixType; // TODO Matrixtyp definieren typedef struct Matrix { + MatrixType *buffer; unsigned int rows; unsigned int cols; - MatrixType *buffer; } Matrix; diff --git a/neuralNetworkTests.c b/neuralNetworkTests.c index 21ab370..d6c8322 100644 --- a/neuralNetworkTests.c +++ b/neuralNetworkTests.c @@ -5,10 +5,9 @@ #include "unity.h" #include "neuralNetwork.h" - static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) { - // TODO + } void test_loadModelReturnsCorrectNumberOfLayers(void) @@ -16,15 +15,15 @@ void test_loadModelReturnsCorrectNumberOfLayers(void) const char *path = "some__nn_test_file.info2"; MatrixType buffer1[] = {1, 2, 3, 4, 5, 6}; MatrixType buffer2[] = {1, 2, 3, 4, 5, 6}; - Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2}; - Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3}; + Matrix weights1 = {.buffer = buffer1, .rows = 3, .cols = 2}; + Matrix weights2 = {.buffer = buffer2, .rows = 2, .cols = 3}; MatrixType buffer3[] = {1, 2, 3}; MatrixType buffer4[] = {1, 2}; - Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1}; - Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1}; - Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}}; + Matrix biases1 = {.buffer = buffer3, .rows = 3, .cols = 1}; + Matrix biases2 = {.buffer = buffer4, .rows = 2, .cols = 1}; + Layer layers[] = {{.weights = weights1, .biases = biases1}, {.weights = weights2, .biases = biases2}}; - NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2}; + NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 2}; NeuralNetwork netUnderTest; prepareNeuralNetworkFile(path, expectedNet); @@ -40,12 +39,12 @@ void test_loadModelReturnsCorrectWeightDimensions(void) { const char *path = "some__nn_test_file.info2"; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; - Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; + Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2}; MatrixType biasBuffer[] = {7, 8, 9}; - Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; - Layer layers[] = {{.weights=weights, .biases=biases}}; + Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1}; + Layer layers[] = {{.weights = weights, .biases = biases}}; - NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; + NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1}; NeuralNetwork netUnderTest; prepareNeuralNetworkFile(path, expectedNet); @@ -63,12 +62,12 @@ void test_loadModelReturnsCorrectBiasDimensions(void) { const char *path = "some__nn_test_file.info2"; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; - Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; + Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2}; MatrixType biasBuffer[] = {7, 8, 9}; - Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; - Layer layers[] = {{.weights=weights, .biases=biases}}; + Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1}; + Layer layers[] = {{.weights = weights, .biases = biases}}; - NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; + NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1}; NeuralNetwork netUnderTest; prepareNeuralNetworkFile(path, expectedNet); @@ -86,12 +85,12 @@ void test_loadModelReturnsCorrectWeights(void) { const char *path = "some__nn_test_file.info2"; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; - Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; + Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2}; MatrixType biasBuffer[] = {7, 8, 9}; - Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; - Layer layers[] = {{.weights=weights, .biases=biases}}; + Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1}; + Layer layers[] = {{.weights = weights, .biases = biases}}; - NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; + NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1}; NeuralNetwork netUnderTest; prepareNeuralNetworkFile(path, expectedNet); @@ -111,12 +110,12 @@ void test_loadModelReturnsCorrectBiases(void) { const char *path = "some__nn_test_file.info2"; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; - Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; + Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2}; MatrixType biasBuffer[] = {7, 8, 9}; - Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; - Layer layers[] = {{.weights=weights, .biases=biases}}; + Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1}; + Layer layers[] = {{.weights = weights, .biases = biases}}; - NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; + NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1}; NeuralNetwork netUnderTest; prepareNeuralNetworkFile(path, expectedNet); @@ -138,7 +137,7 @@ void test_loadModelFailsOnWrongFileTag(void) NeuralNetwork netUnderTest; FILE *file = fopen(path, "wb"); - if(file != NULL) + if (file != NULL) { const char *fileTag = "info2_neural_network_file_format"; @@ -159,12 +158,12 @@ void test_clearModelSetsMembersToNull(void) { const char *path = "some__nn_test_file.info2"; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; - Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; + Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2}; MatrixType biasBuffer[] = {7, 8, 9}; - Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; - Layer layers[] = {{.weights=weights, .biases=biases}}; + Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1}; + Layer layers[] = {{.weights = weights, .biases = biases}}; - NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; + NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1}; NeuralNetwork netUnderTest; prepareNeuralNetworkFile(path, expectedNet); @@ -181,7 +180,7 @@ void test_clearModelSetsMembersToNull(void) static void someActivation(Matrix *matrix) { - for(int i = 0; i < matrix->rows * matrix->cols; i++) + for (int i = 0; i < matrix->rows * matrix->cols; i++) { matrix->buffer[i] = fabs(matrix->buffer[i]); } @@ -192,23 +191,23 @@ void test_predictReturnsCorrectLabels(void) const unsigned char expectedLabels[] = {4, 2}; GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17}; GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128}; - GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}}; + GrayScaleImage inputImages[] = {{.buffer = imageBuffer1, .width = 2, .height = 2}, {.buffer = imageBuffer2, .width = 2, .height = 2}}; MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8}; MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14}; MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29}; - Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4}; - Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2}; - Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3}; + Matrix weights1 = {.buffer = weightsBuffer1, .rows = 2, .cols = 4}; + Matrix weights2 = {.buffer = weightsBuffer2, .rows = 3, .cols = 2}; + Matrix weights3 = {.buffer = weightsBuffer3, .rows = 5, .cols = 3}; MatrixType biasBuffer1[] = {200, 0}; MatrixType biasBuffer2[] = {0, -100, 0}; MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0}; - Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1}; - Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1}; - Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1}; - Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \ - {.weights=weights2, .biases=biases2, .activation=someActivation}, \ - {.weights=weights3, .biases=biases3, .activation=someActivation}}; - NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3}; + Matrix biases1 = {.buffer = biasBuffer1, .rows = 2, .cols = 1}; + Matrix biases2 = {.buffer = biasBuffer2, .rows = 3, .cols = 1}; + Matrix biases3 = {.buffer = biasBuffer3, .rows = 5, .cols = 1}; + Layer layers[] = {{.weights = weights1, .biases = biases1, .activation = someActivation}, + {.weights = weights2, .biases = biases2, .activation = someActivation}, + {.weights = weights3, .biases = biases3, .activation = someActivation}}; + NeuralNetwork netUnderTest = {.layers = layers, .numberOfLayers = 3}; unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2); TEST_ASSERT_NOT_NULL(predictedLabels); int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0])); @@ -216,11 +215,13 @@ void test_predictReturnsCorrectLabels(void) free(predictedLabels); } -void setUp(void) { +void setUp(void) +{ // Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden } -void tearDown(void) { +void tearDown(void) +{ // Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden }