Compare commits

...

43 Commits
main ... main

Author SHA1 Message Date
Kristin
f1af6c1e4a Merge branch 'Krisp2' 2025-11-25 10:49:32 +01:00
Kristin
9606b5a03e kp 2025-11-25 10:48:24 +01:00
Kristin
3c4e4df496 Merge branch 'main' of https://git.efi.th-nuernberg.de/gitea/kachelto100370/info2Praktikum-NeuronalesNetz into Krisp2 2025-11-25 10:41:30 +01:00
Kristin
fd1bc886a7 neu 2025-11-25 10:38:40 +01:00
Max-R
efa260ccbe 0 fehler bei add abfangen 2025-11-25 10:15:52 +01:00
Max-R
801abc1b66 Merge branch 'main' of https://git.efi.th-nuernberg.de/gitea/kachelto100370/info2Praktikum-NeuronalesNetz 2025-11-25 10:00:31 +01:00
Max-R
8e518a3bdd Merge branch 'RMax' matrix.c voll 2025-11-25 09:58:03 +01:00
Max-R
0baf646832 add files to gitignore 2025-11-25 09:57:28 +01:00
Kristin
0f0f2f19c3 lauffaehige version, noch haesslich 2025-11-25 09:57:13 +01:00
98dd789680 input image things 2025-11-25 09:10:54 +01:00
Kristin
7aa57191da neuralNetworkTests mit Kommentaren 2025-11-23 17:16:18 +01:00
Kristin
da4eaa718d Merge branch 'main' of https://git.efi.th-nuernberg.de/gitea/kachelto100370/info2Praktikum-NeuronalesNetz into Krisp2 2025-11-23 16:44:13 +01:00
Kristin
56d59b1b50 neuralNetworkTests 2025-11-23 16:41:57 +01:00
Max-R
21d9b5c01d so finde ich es schöner... 2025-11-22 15:29:32 +01:00
Max-R
e7930c7eb0 kommentaare update 2025-11-22 15:23:50 +01:00
Max-R
5075c34983 kommentaare update 2025-11-22 15:19:41 +01:00
Max-R
b187a13b17 multiply, besteht MatrixTests 2025-11-22 15:17:12 +01:00
Max-R
4e2ee7078a alles bis uf multiply 2025-11-22 12:41:46 +01:00
Kristin
86a9d16c4f addmatrix mit broadcasten 2025-11-22 12:41:41 +01:00
Kristin
ede0bd8bd8 addmatrix mit broadcasten 2025-11-22 12:15:04 +01:00
Max-R
35a598a276 broadcasting 2025-11-22 11:54:32 +01:00
Max-R
e1ea9f33cd create matrix mit null 2025-11-22 10:55:27 +01:00
7f3c6d1d3f first pass matrix add, ohne broadcasting 2025-11-20 16:04:01 +01:00
Max-R
0886489d49 Matrix noch ohne broadcasting 2025-11-20 16:03:44 +01:00
Max-R
f9c46a6784 Merge branch 'main' of https://git.efi.th-nuernberg.de/gitea/kachelto100370/info2Praktikum-NeuronalesNetz into RMax 2025-11-20 14:50:33 +01:00
97df88c0ab Merge pull request 'Krisp2' (#1) from Krisp2 into main
Reviewed-on: kachelto100370/info2Praktikum-NeuronalesNetz#1
2025-11-20 13:48:43 +00:00
be07dcffcf Merge branch 'main' into Krisp2 2025-11-20 13:48:23 +00:00
Kristin
858673bdca makefile für alle Betriebssysteme 2025-11-20 14:46:14 +01:00
Max-R
5fcc3cd042 Merge branch 'main' of https://git.efi.th-nuernberg.de/gitea/kachelto100370/info2Praktikum-NeuronalesNetz into RMax 2025-11-18 10:51:55 +01:00
619cd95a5c start wroking on image Input 2025-11-18 10:45:50 +01:00
Kristin
6b9711e47d Merge branch 'main' of https://git.efi.th-nuernberg.de/gitea/kachelto100370/info2Praktikum-NeuronalesNetz into Krisp2 2025-11-18 10:15:56 +01:00
653312f8a6 merge upstream 2025-11-18 09:15:45 +00:00
Kristin
2b751ef931 Merge branch 'main' of https://git.efi.th-nuernberg.de/gitea/kachelto100370/info2Praktikum-NeuronalesNetz into Krisp2 2025-11-18 10:13:09 +01:00
Kristin
0081e8f89e data in buffer 2025-11-18 10:11:38 +01:00
d8e759b436 merge upstream 2025-11-16 15:37:40 +00:00
Kristin
3c49920613 matrix.c und matrix.h, makefile für windows 2025-11-13 20:28:48 +01:00
28944bd871 added createMatrix() + matrix data type 2025-11-11 11:15:40 +01:00
Max-R
3de79e2b83 clearMatrix füllen 2025-11-11 11:05:28 +01:00
Max-R
ec54bdd951 create Matrix gefüllt, test unit 2025-11-11 10:36:11 +01:00
29b2966c63 defined struct matrix 2025-11-11 09:54:31 +01:00
Max-R
0e3f03a03d Matrix definiert 2025-11-11 09:20:40 +01:00
41c164d3b2 kleine config änderung 2025-11-11 09:20:18 +01:00
b4bc2fae8a add Readme 2025-11-11 09:20:18 +01:00
13 changed files with 1148 additions and 600 deletions

5
.gitignore vendored
View File

@ -1,4 +1,7 @@
mnist
runTests
*.o
*.exe
*.exe
.vscode/c_cpp_properties.json
.vscode/launch.json
.vscode/settings.json

18
.vscode/c_cpp_properties.json vendored Normal file
View File

@ -0,0 +1,18 @@
{
"configurations": [
{
"name": "windows-gcc-x64",
"includePath": [
"${workspaceFolder}/**"
],
"compilerPath": "C:/ProgramData/mingw64/mingw64/bin/gcc.exe",
"cStandard": "${default}",
"cppStandard": "${default}",
"intelliSenseMode": "windows-gcc-x64",
"compilerArgs": [
""
]
}
],
"version": 4
}

24
.vscode/launch.json vendored Normal file
View File

@ -0,0 +1,24 @@
{
"version": "0.2.0",
"configurations": [
{
"name": "C/C++ Runner: Debug Session",
"type": "cppdbg",
"request": "launch",
"args": [],
"stopAtEntry": false,
"externalConsole": true,
"cwd": "c:/Users/Max-R/I2Pr/repoKachelto/I2-Pr_neuronalesNetz/info2Praktikum-NeuronalesNetz",
"program": "c:/Users/Max-R/I2Pr/repoKachelto/I2-Pr_neuronalesNetz/info2Praktikum-NeuronalesNetz/build/Debug/outDebug",
"MIMode": "gdb",
"miDebuggerPath": "gdb",
"setupCommands": [
{
"description": "Enable pretty-printing for gdb",
"text": "-enable-pretty-printing",
"ignoreFailures": true
}
]
}
]
}

59
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,59 @@
{
"C_Cpp_Runner.cCompilerPath": "gcc",
"C_Cpp_Runner.cppCompilerPath": "g++",
"C_Cpp_Runner.debuggerPath": "gdb",
"C_Cpp_Runner.cStandard": "",
"C_Cpp_Runner.cppStandard": "",
"C_Cpp_Runner.msvcBatchPath": "C:/Program Files/Microsoft Visual Studio/VR_NR/Community/VC/Auxiliary/Build/vcvarsall.bat",
"C_Cpp_Runner.useMsvc": false,
"C_Cpp_Runner.warnings": [
"-Wall",
"-Wextra",
"-Wpedantic",
"-Wshadow",
"-Wformat=2",
"-Wcast-align",
"-Wconversion",
"-Wsign-conversion",
"-Wnull-dereference"
],
"C_Cpp_Runner.msvcWarnings": [
"/W4",
"/permissive-",
"/w14242",
"/w14287",
"/w14296",
"/w14311",
"/w14826",
"/w44062",
"/w44242",
"/w14905",
"/w14906",
"/w14263",
"/w44265",
"/w14928"
],
"C_Cpp_Runner.enableWarnings": true,
"C_Cpp_Runner.warningsAsError": false,
"C_Cpp_Runner.compilerArgs": [],
"C_Cpp_Runner.linkerArgs": [],
"C_Cpp_Runner.includePaths": [],
"C_Cpp_Runner.includeSearch": [
"*",
"**/*"
],
"C_Cpp_Runner.excludeSearch": [
"**/build",
"**/build/**",
"**/.*",
"**/.*/**",
"**/.vscode",
"**/.vscode/**"
],
"C_Cpp_Runner.useAddressSanitizer": false,
"C_Cpp_Runner.useUndefinedSanitizer": false,
"C_Cpp_Runner.useLeakSanitizer": false,
"C_Cpp_Runner.showCompilationTime": false,
"C_Cpp_Runner.useLinkTimeOptimization": false,
"C_Cpp_Runner.msvcSecureNoWarnings": false
}

2
README.md Normal file
View File

@ -0,0 +1,2 @@
# Projekt 2 für Informatik 2 Praktikum

View File

@ -1,22 +1,134 @@
#include "imageInput.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "imageInput.h"
#define BUFFER_SIZE 100
#define FILE_HEADER_STRING "__info2_image_file_format__"
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
GrayScaleImageSeries *readImages(const char *path)
{
GrayScaleImageSeries *series = NULL;
return series;
/* ----------------------------------------------------------
1. Header prüfen
---------------------------------------------------------- */
static int readHeader(FILE *file) {
char header[sizeof(FILE_HEADER_STRING)];
if (fread(header, 1, sizeof(FILE_HEADER_STRING) - 1, file) !=
sizeof(FILE_HEADER_STRING) - 1)
return 0;
header[sizeof(FILE_HEADER_STRING) - 1] = '\0';
return strcmp(header, FILE_HEADER_STRING) == 0;
}
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
void clearSeries(GrayScaleImageSeries *series)
{
}
/* ----------------------------------------------------------
2. Meta-Daten lesen (unsigned short)
---------------------------------------------------------- */
static int readMeta(FILE *file, unsigned short *count, unsigned short *width,
unsigned short *height) {
if (fread(count, sizeof(unsigned short), 1, file) != 1)
return 0;
if (fread(width, sizeof(unsigned short), 1, file) != 1)
return 0;
if (fread(height, sizeof(unsigned short), 1, file) != 1)
return 0;
return 1;
}
/* ----------------------------------------------------------
3. Einzelbild lesen
---------------------------------------------------------- */
static int readSingleImage(FILE *file, GrayScaleImage *img,
unsigned short width, unsigned short height) {
img->width = width;
img->height = height;
size_t numPixels = (size_t)width * (size_t)height;
img->buffer = malloc(numPixels);
if (!img->buffer)
return 0;
if (fread(img->buffer, 1, numPixels, file) != numPixels) {
free(img->buffer);
img->buffer = NULL;
return 0;
}
return 1;
}
/* ----------------------------------------------------------
4. Label lesen
---------------------------------------------------------- */
static int readLabel(FILE *file, unsigned char *label) {
return fread(label, 1, 1, file) == 1;
}
/* ----------------------------------------------------------
5. Komplette Bildserie lesen
---------------------------------------------------------- */
GrayScaleImageSeries *readImages(const char *path) {
FILE *file = fopen(path, "rb");
if (!file)
return NULL;
if (!readHeader(file)) {
fclose(file);
return NULL;
}
unsigned short count, width, height;
if (!readMeta(file, &count, &width, &height)) {
fclose(file);
return NULL;
}
// printf("%d, %d, %d", count, width, height);
GrayScaleImageSeries *series = malloc(sizeof(GrayScaleImageSeries));
if (!series) {
fclose(file);
return NULL;
}
series->count = count;
series->images = malloc(count * sizeof(GrayScaleImage));
series->labels = malloc(count * sizeof(unsigned char));
if (!series->images || !series->labels) {
free(series->images);
free(series->labels);
free(series);
fclose(file);
return NULL;
}
for (unsigned int i = 0; i < count; i++) {
if (!readSingleImage(file, &series->images[i], width, height) ||
!readLabel(file, &series->labels[i])) {
// Aufräumen bei Fehler
for (unsigned int j = 0; j < i; j++) {
free(series->images[j].buffer);
}
free(series->images);
free(series->labels);
free(series);
fclose(file);
return NULL;
}
}
fclose(file);
return series;
}
/* ----------------------------------------------------------
6. Speicher komplett freigeben
---------------------------------------------------------- */
void clearSeries(GrayScaleImageSeries *series) {
if (!series)
return;
for (unsigned int i = 0; i < series->count; i++) {
free(series->images[i].buffer);
}
free(series->images);
free(series->labels);
free(series);
}

View File

@ -1,143 +1,204 @@
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "unity.h"
#include "imageInput.h"
#include "unity.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* ---------------------------------------------------------
Hilfsfunktion: Testdatei vorbereiten
--------------------------------------------------------- */
static void prepareImageFile(const char *path, unsigned int width,
unsigned int height, unsigned int numberOfImages,
unsigned char label) {
FILE *file = fopen(path, "wb");
if (!file)
return;
static void prepareImageFile(const char *path, unsigned short int width, unsigned short int height, unsigned int short numberOfImages, unsigned char label)
{
FILE *file = fopen(path, "wb");
// Header
const char *fileTag = "__info2_image_file_format__";
fwrite(fileTag, 1, strlen(fileTag), file);
if(file != NULL)
{
const char *fileTag = "__info2_image_file_format__";
GrayScalePixelType *zeroBuffer = (GrayScalePixelType *)calloc(numberOfImages * width * height, sizeof(GrayScalePixelType));
// Meta-Daten als unsigned short
unsigned short n = (unsigned short)numberOfImages;
unsigned short w = (unsigned short)width;
unsigned short h = (unsigned short)height;
fwrite(&n, sizeof(unsigned short), 1, file);
fwrite(&w, sizeof(unsigned short), 1, file);
fwrite(&h, sizeof(unsigned short), 1, file);
if(zeroBuffer != NULL)
{
fwrite(fileTag, sizeof(fileTag[0]), strlen(fileTag), file);
fwrite(&numberOfImages, sizeof(numberOfImages), 1, file);
fwrite(&width, sizeof(width), 1, file);
fwrite(&height, sizeof(height), 1, file);
// Pixelbuffer
GrayScalePixelType *buffer =
calloc(width * height, sizeof(GrayScalePixelType));
if (!buffer) {
fclose(file);
return;
}
for (unsigned int i = 0; i < width * height; i++)
buffer[i] = (GrayScalePixelType)i;
for(int i = 0; i < numberOfImages; i++)
{
fwrite(zeroBuffer, sizeof(GrayScalePixelType), width * height, file);
fwrite(&label, sizeof(unsigned char), 1, file);
}
// Jedes Bild schreiben: Pixel + Label
for (unsigned int img = 0; img < numberOfImages; img++) {
fwrite(buffer, sizeof(GrayScalePixelType), width * height, file);
fwrite(&label, sizeof(unsigned char), 1, file);
}
free(zeroBuffer);
}
fclose(file);
}
free(buffer);
fclose(file);
}
/* ---------------------------------------------------------
Unit Tests
--------------------------------------------------------- */
void test_readImagesReturnsCorrectNumberOfImages(void)
{
GrayScaleImageSeries *series = NULL;
const unsigned short expectedNumberOfImages = 2;
const char *path = "testFile.info2";
prepareImageFile(path, 8, 8, expectedNumberOfImages, 1);
series = readImages(path);
TEST_ASSERT_NOT_NULL(series);
TEST_ASSERT_EQUAL_UINT16(expectedNumberOfImages, series->count);
clearSeries(series);
remove(path);
void test_readImagesReturnsCorrectNumberOfImages(void) {
GrayScaleImageSeries *series = NULL;
const unsigned int expectedNumberOfImages = 2;
const char *path = "testFile.info2";
prepareImageFile(path, 8, 8, expectedNumberOfImages, 1);
series = readImages(path);
TEST_ASSERT_NOT_NULL(series);
TEST_ASSERT_EQUAL_UINT(expectedNumberOfImages, series->count);
clearSeries(series);
remove(path);
}
void test_readImagesReturnsCorrectImageWidth(void)
{
GrayScaleImageSeries *series = NULL;
const unsigned short expectedWidth = 10;
const char *path = "testFile.info2";
prepareImageFile(path, expectedWidth, 8, 2, 1);
series = readImages(path);
TEST_ASSERT_NOT_NULL(series);
TEST_ASSERT_NOT_NULL(series->images);
TEST_ASSERT_EQUAL_UINT16(2, series->count);
TEST_ASSERT_EQUAL_UINT16(expectedWidth, series->images[0].width);
TEST_ASSERT_EQUAL_UINT16(expectedWidth, series->images[1].width);
clearSeries(series);
remove(path);
void test_readImagesReturnsCorrectImageWidth(void) {
GrayScaleImageSeries *series = NULL;
const unsigned int expectedWidth = 10;
const char *path = "testFile.info2";
prepareImageFile(path, expectedWidth, 8, 2, 1);
series = readImages(path);
TEST_ASSERT_NOT_NULL(series);
TEST_ASSERT_NOT_NULL(series->images);
TEST_ASSERT_EQUAL_UINT(2, series->count);
TEST_ASSERT_EQUAL_UINT(expectedWidth, series->images[0].width);
TEST_ASSERT_EQUAL_UINT(expectedWidth, series->images[1].width);
clearSeries(series);
remove(path);
}
void test_readImagesReturnsCorrectImageHeight(void)
{
GrayScaleImageSeries *series = NULL;
const unsigned short expectedHeight = 10;
const char *path = "testFile.info2";
prepareImageFile(path, 8, expectedHeight, 2, 1);
series = readImages(path);
TEST_ASSERT_NOT_NULL(series);
TEST_ASSERT_NOT_NULL(series->images);
TEST_ASSERT_EQUAL_UINT16(2, series->count);
TEST_ASSERT_EQUAL_UINT16(expectedHeight, series->images[0].height);
TEST_ASSERT_EQUAL_UINT16(expectedHeight, series->images[1].height);
clearSeries(series);
remove(path);
void test_readImagesReturnsCorrectImageHeight(void) {
GrayScaleImageSeries *series = NULL;
const unsigned int expectedHeight = 10;
const char *path = "testFile.info2";
prepareImageFile(path, 8, expectedHeight, 2, 1);
series = readImages(path);
TEST_ASSERT_NOT_NULL(series);
TEST_ASSERT_NOT_NULL(series->images);
TEST_ASSERT_EQUAL_UINT(2, series->count);
TEST_ASSERT_EQUAL_UINT(expectedHeight, series->images[0].height);
TEST_ASSERT_EQUAL_UINT(expectedHeight, series->images[1].height);
clearSeries(series);
remove(path);
}
void test_readImagesReturnsCorrectLabels(void)
{
const unsigned char expectedLabel = 15;
void test_readImagesReturnsCorrectLabels(void) {
const unsigned char expectedLabel = 15;
GrayScaleImageSeries *series = NULL;
const char *path = "testFile.info2";
prepareImageFile(path, 8, 8, 2, expectedLabel);
series = readImages(path);
TEST_ASSERT_NOT_NULL(series);
TEST_ASSERT_NOT_NULL(series->labels);
TEST_ASSERT_EQUAL_UINT16(2, series->count);
for (int i = 0; i < 2; i++) {
TEST_ASSERT_EQUAL_UINT8(expectedLabel, series->labels[i]);
}
clearSeries(series);
remove(path);
GrayScaleImageSeries *series = NULL;
const char *path = "testFile.info2";
prepareImageFile(path, 8, 8, 2, expectedLabel);
series = readImages(path);
TEST_ASSERT_NOT_NULL(series);
TEST_ASSERT_NOT_NULL(series->labels);
TEST_ASSERT_EQUAL_UINT(2, series->count);
for (int i = 0; i < 2; i++) {
TEST_ASSERT_EQUAL_UINT8(expectedLabel, series->labels[i]);
}
clearSeries(series);
remove(path);
}
void test_readImagesReturnsNullOnNotExistingPath(void)
{
const char *path = "testFile.txt";
remove(path);
void test_readImagesReturnsNullOnNotExistingPath(void) {
const char *path = "testFile.txt";
remove(path);
TEST_ASSERT_NULL(readImages(path));
}
void test_readImagesFailsOnWrongFileTag(void) {
const char *path = "testFile.info2";
FILE *file = fopen(path, "w");
if (file != NULL) {
fprintf(file, "some_tag ");
fclose(file);
TEST_ASSERT_NULL(readImages(path));
}
remove(path);
}
void test_readImagesFailsOnWrongFileTag(void)
{
const char *path = "testFile.info2";
FILE *file = fopen(path, "w");
if(file != NULL)
{
fprintf(file, "some_tag ");
fclose(file);
TEST_ASSERT_NULL(readImages(path));
}
remove(path);
void test_read_GrayScale_Pixel(void) {
GrayScaleImageSeries *series = NULL;
const char *path = "testFile.info2";
prepareImageFile(path, 8, 8, 1, 1);
series = readImages(path);
TEST_ASSERT_NOT_NULL(series);
TEST_ASSERT_NOT_NULL(series->images);
TEST_ASSERT_EQUAL_UINT(1, series->count);
for (int i = 0; i < (8 * 8); i++) {
TEST_ASSERT_EQUAL_UINT8((GrayScalePixelType)i, series->images[0].buffer[i]);
}
clearSeries(series);
remove(path);
}
void setUp(void) {
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
/* ---------------------------------------------------------
Optional: Mehrere Bilder gleichzeitig testen
--------------------------------------------------------- */
void test_readImagesMultipleImagesContent(void) {
GrayScaleImageSeries *series = NULL;
const char *path = "testFile.info2";
const unsigned int numberOfImages = 3;
const unsigned int width = 4;
const unsigned int height = 4;
const unsigned char label = 7;
prepareImageFile(path, width, height, numberOfImages, label);
series = readImages(path);
TEST_ASSERT_NOT_NULL(series);
TEST_ASSERT_NOT_NULL(series->images);
TEST_ASSERT_NOT_NULL(series->labels);
TEST_ASSERT_EQUAL_UINT(numberOfImages, series->count);
for (unsigned int img = 0; img < numberOfImages; img++) {
for (unsigned int i = 0; i < width * height; i++)
TEST_ASSERT_EQUAL_UINT8((GrayScalePixelType)i,
series->images[img].buffer[i]);
TEST_ASSERT_EQUAL_UINT8(label, series->labels[img]);
}
clearSeries(series);
remove(path);
}
void tearDown(void) {
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
/* ---------------------------------------------------------
Setup / Teardown
--------------------------------------------------------- */
void setUp(void) {}
void tearDown(void) {}
/* ---------------------------------------------------------
main()
--------------------------------------------------------- */
int main(void) {
UNITY_BEGIN();
printf("\n============================\nImage input "
"tests\n============================\n");
RUN_TEST(test_readImagesReturnsCorrectNumberOfImages);
RUN_TEST(test_readImagesReturnsCorrectImageWidth);
RUN_TEST(test_readImagesReturnsCorrectImageHeight);
RUN_TEST(test_readImagesReturnsCorrectLabels);
RUN_TEST(test_readImagesReturnsNullOnNotExistingPath);
RUN_TEST(test_readImagesFailsOnWrongFileTag);
RUN_TEST(test_read_GrayScale_Pixel);
RUN_TEST(test_readImagesMultipleImagesContent);
return UNITY_END();
}
int main()
{
UNITY_BEGIN();
printf("\n============================\nImage input tests\n============================\n");
RUN_TEST(test_readImagesReturnsCorrectNumberOfImages);
RUN_TEST(test_readImagesReturnsCorrectImageWidth);
RUN_TEST(test_readImagesReturnsCorrectImageHeight);
RUN_TEST(test_readImagesReturnsCorrectLabels);
RUN_TEST(test_readImagesReturnsNullOnNotExistingPath);
RUN_TEST(test_readImagesFailsOnWrongFileTag);
return UNITY_END();
}

View File

@ -63,4 +63,4 @@ ifeq ($(OS),Windows_NT)
else
rm -f *.o mnist runMatrixTests runNeuralNetworkTests runImageInputTests
endif

219
matrix.c
View File

@ -1,35 +1,208 @@
#include "matrix.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "matrix.h"
// TODO Matrix-Funktionen implementieren
/*typedef struct {
unsigned int rows; //Zeilen
unsigned int cols; //Spalten
MatrixType *buffer; //Zeiger auf Speicherbereich Reihen*Spalten
} Matrix;*/
Matrix createMatrix(unsigned int rows, unsigned int cols)
{
Matrix createMatrix(unsigned int rows, unsigned int cols) {
if (cols == 0 || rows == 0) {
Matrix errorMatrix = {0, 0, NULL};
return errorMatrix;
}
MatrixType *buffer =
malloc(rows * cols * sizeof(MatrixType)); // Speicher reservieren, malloc
// liefert Zeiger auf Speicher
Matrix newMatrix = {rows, cols, buffer}; // neue Matrix nach struct
return newMatrix;
}
void clearMatrix(Matrix *matrix) {
if (matrix->buffer != NULL) {
free((*matrix).buffer);
matrix->buffer = NULL;
}
matrix->rows = 0;
matrix->cols = 0;
}
void clearMatrix(Matrix *matrix)
{
}
void setMatrixAt(const MatrixType value, Matrix matrix,
const unsigned int rowIdx, // Kopie der Matrix wird übergeben
const unsigned int colIdx) {
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
{
if (rowIdx >= matrix.rows || colIdx >= matrix.cols) {
// Speichergröße nicht überschreiten
return;
}
matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
// rowIdx * matrix.cols -> Beginn der Zeile colIdx ->Spalte
// innerhalb der Zeile
}
MatrixType getMatrixAt(const Matrix matrix,
unsigned int rowIdx, // Kopie der Matrix wird übergeben
unsigned int colIdx) {
if (rowIdx >= matrix.rows || colIdx >= matrix.cols ||
matrix.buffer == NULL) { // Speichergröße nicht überschreiten
return UNDEFINED_MATRIX_VALUE;
}
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
{
MatrixType value = matrix.buffer[rowIdx * matrix.cols + colIdx];
return value;
}
Matrix add(const Matrix matrix1, const Matrix matrix2)
{
Matrix broadcastingCols(const Matrix matrix, const unsigned int cols) {
Matrix copy1 = createMatrix(matrix.rows, cols);
for (int r = 0; r < matrix.rows; r++) {
MatrixType valueMatrix1 = getMatrixAt(matrix, r, 0);
for (int c = 0; c < cols; c++) {
setMatrixAt(valueMatrix1, copy1, r, c);
}
}
return copy1;
}
Matrix broadcastingRows(const Matrix matrix, const unsigned int rows) {
Matrix copy1 = createMatrix(rows, matrix.cols);
for (int c = 0; c < matrix.cols; c++) {
MatrixType valueMatrix1 = getMatrixAt(matrix, 0, c);
for (int r = 0; r < rows; r++) {
setMatrixAt(valueMatrix1, copy1, r, c);
}
}
return copy1;
}
Matrix add(const Matrix matrix1, const Matrix matrix2) {
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
{
}
// Ergebnismatrix
Matrix result;
const int cols1 = matrix1.cols;
const int rows1 = matrix1.rows;
const int cols2 = matrix2.cols;
const int rows2 = matrix2.rows;
const int rowsEqual = (matrix1.rows == matrix2.rows) ? 1 : 0;
const int colsEqual = (matrix1.cols == matrix2.cols) ? 1 : 0;
// Broadcasting nur bei Vektor und Matrix, Fehlermeldung bei zwei unpassender
// Matrix
if (rowsEqual == 1 && colsEqual == 1) {
Matrix result = createMatrix(matrix1.rows, matrix1.cols);
if (result.buffer == NULL) {
return (Matrix){0, 0, NULL};
}
for (int i = 0; i < rows1; i++) {
for (int j = 0; j < cols1; j++) {
int valueM1 = getMatrixAt(matrix1, i, j);
int valueM2 = getMatrixAt(matrix2, i, j);
int sum = valueM1 + valueM2;
setMatrixAt(sum, result, i, j);
}
}
return result;
} else if (rowsEqual == 1 && (cols1 == 1 || cols2 == 1)) {
if (cols1 == 1) { // broadcasting von vektor 1 zu matrix 1, add
Matrix newMatrix = broadcastingCols(matrix1, cols2);
// add
Matrix result = createMatrix(newMatrix.rows, newMatrix.cols);
if (result.buffer == NULL) {
return (Matrix){0, 0, NULL};
}
for (int i = 0; i < rows1; i++) {
for (int j = 0; j < cols2; j++) {
int valueM1 = getMatrixAt(newMatrix, i, j);
int valueM2 = getMatrixAt(matrix2, i, j);
int sum = valueM1 + valueM2;
setMatrixAt(sum, result, i, j);
}
}
return result;
} else {
Matrix newMatrix2 = broadcastingCols(matrix2, cols1);
// add
Matrix result = createMatrix(newMatrix2.rows, newMatrix2.cols);
if (result.buffer == NULL) {
return (Matrix){0, 0, NULL};
}
for (int i = 0; i < rows1; i++) {
for (int j = 0; j < cols1; j++) {
int valueM1 = getMatrixAt(matrix1, i, j);
int valueM2 = getMatrixAt(newMatrix2, i, j);
int sum = valueM1 + valueM2;
setMatrixAt(sum, result, i, j);
}
}
return result;
}
}
else if ((rows1 == 1 || rows2 == 1) && colsEqual == 1) {
if (rows1 == 1) {
Matrix newMatrix = broadcastingRows(matrix1, rows2);
// add
Matrix result = createMatrix(newMatrix.rows, newMatrix.cols);
if (result.buffer == NULL) {
return (Matrix){0, 0, NULL};
}
for (int i = 0; i < rows2; i++) {
for (int j = 0; j < cols1; j++) {
int valueM1 = getMatrixAt(newMatrix, i, j);
int valueM2 = getMatrixAt(matrix2, i, j);
int sum = valueM1 + valueM2;
setMatrixAt(sum, result, i, j);
}
}
return result;
} else {
Matrix newMatrix2 = broadcastingRows(matrix2, rows1);
// add
Matrix result = createMatrix(newMatrix2.rows, newMatrix2.cols);
if (result.buffer == NULL) {
return (Matrix){0, 0, NULL};
}
for (int i = 0; i < rows1; i++) {
for (int j = 0; j < cols1; j++) {
int valueM1 = getMatrixAt(matrix1, i, j);
int valueM2 = getMatrixAt(newMatrix2, i, j);
int sum = valueM1 + valueM2;
setMatrixAt(sum, result, i, j);
}
}
return result;
}
} else {
// kein add möglich
Matrix errorMatrix = {0, 0, NULL};
return errorMatrix;
}
return result;
}
Matrix multiply(const Matrix matrix1, const Matrix matrix2) {
// Spalten1 müssen gleich zeilen2 sein! dann multiplizieren
if (matrix1.cols == matrix2.rows) {
Matrix multMatrix = createMatrix(matrix1.rows, matrix2.cols);
// durch neue matrix iterieren
for (int r = 0; r < matrix1.rows; r++) {
for (int c = 0; c < matrix2.cols; c++) {
MatrixType sum = 0.0;
// skalarprodukte berechnen, k damit die ganze zeile mal die ganze
// spalte genommen wird quasi
for (int k = 0; k < matrix1.cols; k++) {
// sum+=
// matrix1.buffer[r*matrix1.cols+k]*matrix2.buffer[k*matrix2.cols+c];
sum += getMatrixAt(matrix1, r, k) * getMatrixAt(matrix2, k, c);
}
// Ergebnisse in neue matrix speichern
setMatrixAt(sum, multMatrix, r, c);
}
}
return multMatrix;
}
// sonst fehler, kein multiply möglich
else {
Matrix errorMatrix = {0, 0, NULL};
return errorMatrix;
}
}

View File

@ -6,14 +6,25 @@
typedef float MatrixType;
// TODO Matrixtyp definieren
typedef struct {
unsigned int rows;
unsigned int cols;
MatrixType *buffer;
} Matrix;
Matrix createMatrix(unsigned int rows, unsigned int cols);
void clearMatrix(Matrix *matrix);
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx);
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx);
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx,
unsigned int colIdx);
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx,
unsigned int colIdx);
Matrix broadCastCols(const Matrix matrix, const unsigned int rows,
const unsigned int cols);
Matrix broadCastRows(const Matrix matrix, const unsigned int rows,
const unsigned int cols);
Matrix add(const Matrix matrix1, const Matrix matrix2);
Matrix multiply(const Matrix matrix1, const Matrix matrix2);
#endif

29
neuralN_readFiles Normal file
View File

@ -0,0 +1,29 @@
Inhalte: Dynamische Speicherverwaltung, Strukturen, Dateien lesen.
Ziel: Die Bilder aus mnist_test.info 2 auslesen
Struktur für einlesen des Strings am Anfang der Datei:
int AnzahlBilder
int breiteBilder
int LaengeBilder
Struktur für Bilder:
unsinged int array Breite * Höhe
unsigned int Klasse (Label 0 - 9)
Speicher für Bilder dynamisch allokieren
GrayScaleImageSeries:
datei einlesen
header String aus der Datei lesen
mit header String den benötigten Speicher freigeben
in den Speicher die Datei einschreiben (mit Hilfsfunktion)
Hilfsfunktion (saveFile)
gehe zum Anfang des Strings
speicher alles der Reihe nach ein
clearSeries:
pointer der be malloc kommt nehemen
free()

View File

@ -1,268 +1,235 @@
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "neuralNetwork.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define BUFFER_SIZE 100
#define FILE_HEADER_STRING "__info2_neural_network_file_format__"
static void softmax(Matrix *matrix)
{
if(matrix->cols > 0)
{
double *colSums = (double *)calloc(matrix->cols, sizeof(double));
static void softmax(Matrix *matrix) {
if (matrix->cols > 0) {
double *colSums = (double *)calloc(matrix->cols, sizeof(double));
if(colSums != NULL)
{
for(int colIdx = 0; colIdx < matrix->cols; colIdx++)
{
for(int rowIdx = 0; rowIdx < matrix->rows; rowIdx++)
{
MatrixType expValue = exp(getMatrixAt(*matrix, rowIdx, colIdx));
setMatrixAt(expValue, *matrix, rowIdx, colIdx);
colSums[colIdx] += expValue;
}
}
for(int colIdx = 0; colIdx < matrix->cols; colIdx++)
{
for(int rowIdx = 0; rowIdx < matrix->rows; rowIdx++)
{
MatrixType normalizedValue = getMatrixAt(*matrix, rowIdx, colIdx) / colSums[colIdx];
setMatrixAt(normalizedValue, *matrix, rowIdx, colIdx);
}
}
free(colSums);
if (colSums != NULL) {
for (int colIdx = 0; colIdx < matrix->cols; colIdx++) {
for (int rowIdx = 0; rowIdx < matrix->rows; rowIdx++) {
MatrixType expValue = exp(getMatrixAt(*matrix, rowIdx, colIdx));
setMatrixAt(expValue, *matrix, rowIdx, colIdx);
colSums[colIdx] += expValue;
}
}
}
}
static void relu(Matrix *matrix)
{
for(int i = 0; i < matrix->rows * matrix->cols; i++)
{
matrix->buffer[i] = matrix->buffer[i] >= 0 ? matrix->buffer[i] : 0;
}
}
static int checkFileHeader(FILE *file)
{
int isValid = 0;
int fileHeaderLen = strlen(FILE_HEADER_STRING);
char buffer[BUFFER_SIZE] = {0};
if(BUFFER_SIZE-1 < fileHeaderLen)
fileHeaderLen = BUFFER_SIZE-1;
if(fread(buffer, sizeof(char), fileHeaderLen, file) == fileHeaderLen)
isValid = strcmp(buffer, FILE_HEADER_STRING) == 0;
return isValid;
}
static unsigned int readDimension(FILE *file)
{
int dimension = 0;
if(fread(&dimension, sizeof(int), 1, file) != 1)
dimension = 0;
return dimension;
}
static Matrix readMatrix(FILE *file, unsigned int rows, unsigned int cols)
{
Matrix matrix = createMatrix(rows, cols);
if(matrix.buffer != NULL)
{
if(fread(matrix.buffer, sizeof(MatrixType), rows*cols, file) != rows*cols)
clearMatrix(&matrix);
}
return matrix;
}
static Layer readLayer(FILE *file, unsigned int inputDimension, unsigned int outputDimension)
{
Layer layer;
layer.weights = readMatrix(file, outputDimension, inputDimension);
layer.biases = readMatrix(file, outputDimension, 1);
return layer;
}
static int isEmptyLayer(const Layer layer)
{
return layer.biases.cols == 0 || layer.biases.rows == 0 || layer.biases.buffer == NULL || layer.weights.rows == 0 || layer.weights.cols == 0 || layer.weights.buffer == NULL;
}
static void clearLayer(Layer *layer)
{
if(layer != NULL)
{
clearMatrix(&layer->weights);
clearMatrix(&layer->biases);
layer->activation = NULL;
}
}
static void assignActivations(NeuralNetwork model)
{
for(int i = 0; i < (int)model.numberOfLayers-1; i++)
{
model.layers[i].activation = relu;
}
if(model.numberOfLayers > 0)
model.layers[model.numberOfLayers-1].activation = softmax;
}
NeuralNetwork loadModel(const char *path)
{
NeuralNetwork model = {NULL, 0};
FILE *file = fopen(path, "rb");
if(file != NULL)
{
if(checkFileHeader(file))
{
unsigned int inputDimension = readDimension(file);
unsigned int outputDimension = readDimension(file);
while(inputDimension > 0 && outputDimension > 0)
{
Layer layer = readLayer(file, inputDimension, outputDimension);
Layer *layerBuffer = NULL;
if(isEmptyLayer(layer))
{
clearLayer(&layer);
clearModel(&model);
break;
}
layerBuffer = (Layer *)realloc(model.layers, (model.numberOfLayers + 1) * sizeof(Layer));
if(layerBuffer != NULL)
model.layers = layerBuffer;
else
{
clearModel(&model);
break;
}
model.layers[model.numberOfLayers] = layer;
model.numberOfLayers++;
inputDimension = outputDimension;
outputDimension = readDimension(file);
}
for (int colIdx = 0; colIdx < matrix->cols; colIdx++) {
for (int rowIdx = 0; rowIdx < matrix->rows; rowIdx++) {
MatrixType normalizedValue =
getMatrixAt(*matrix, rowIdx, colIdx) / colSums[colIdx];
setMatrixAt(normalizedValue, *matrix, rowIdx, colIdx);
}
fclose(file);
assignActivations(model);
}
free(colSums);
}
return model;
}
}
static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[], unsigned int count)
{
Matrix matrix = {NULL, 0, 0};
static void relu(Matrix *matrix) {
for (int i = 0; i < matrix->rows * matrix->cols; i++) {
matrix->buffer[i] = matrix->buffer[i] >= 0 ? matrix->buffer[i] : 0;
}
}
if(count > 0 && images != NULL)
{
matrix = createMatrix(images[0].height * images[0].width, count);
static int checkFileHeader(FILE *file) {
int isValid = 0;
int fileHeaderLen = strlen(FILE_HEADER_STRING);
char buffer[BUFFER_SIZE] = {0};
if(matrix.buffer != NULL)
{
for(int i = 0; i < count; i++)
{
for(int j = 0; j < images[i].width * images[i].height; j++)
{
setMatrixAt((MatrixType)images[i].buffer[j], matrix, j, i);
}
}
if (BUFFER_SIZE - 1 < fileHeaderLen)
fileHeaderLen = BUFFER_SIZE - 1;
if (fread(buffer, sizeof(char), fileHeaderLen, file) == fileHeaderLen)
isValid = strcmp(buffer, FILE_HEADER_STRING) == 0;
return isValid;
}
static unsigned int readDimension(FILE *file) {
int dimension = 0;
if (fread(&dimension, sizeof(int), 1, file) != 1)
dimension = 0;
return dimension;
}
static Matrix readMatrix(FILE *file, unsigned int rows, unsigned int cols) {
Matrix matrix = createMatrix(rows, cols);
if (matrix.buffer != NULL) {
if (fread(matrix.buffer, sizeof(MatrixType), rows * cols, file) !=
rows * cols)
clearMatrix(&matrix);
}
return matrix;
}
static Layer readLayer(FILE *file, unsigned int inputDimension,
unsigned int outputDimension) {
Layer layer;
layer.weights = readMatrix(file, outputDimension, inputDimension);
layer.biases = readMatrix(file, outputDimension, 1);
return layer;
}
static int isEmptyLayer(const Layer layer) {
return layer.biases.cols == 0 || layer.biases.rows == 0 ||
layer.biases.buffer == NULL || layer.weights.rows == 0 ||
layer.weights.cols == 0 || layer.weights.buffer == NULL;
}
static void clearLayer(Layer *layer) {
if (layer != NULL) {
clearMatrix(&layer->weights);
clearMatrix(&layer->biases);
layer->activation = NULL;
}
}
static void assignActivations(NeuralNetwork model) {
for (int i = 0; i < (int)model.numberOfLayers - 1; i++) {
model.layers[i].activation = relu;
}
if (model.numberOfLayers > 0)
model.layers[model.numberOfLayers - 1].activation = softmax;
}
NeuralNetwork loadModel(const char *path) {
NeuralNetwork model = {NULL, 0};
FILE *file = fopen(path, "rb");
if (file != NULL) {
if (checkFileHeader(file)) {
unsigned int inputDimension = readDimension(file);
unsigned int outputDimension = readDimension(file);
while (inputDimension > 0 && outputDimension > 0) {
Layer layer = readLayer(file, inputDimension, outputDimension);
Layer *layerBuffer = NULL;
if (isEmptyLayer(layer)) {
clearLayer(&layer);
clearModel(&model);
break;
}
}
return matrix;
}
layerBuffer = (Layer *)realloc(
model.layers, (model.numberOfLayers + 1) * sizeof(Layer));
static Matrix forward(const NeuralNetwork model, Matrix inputBatch)
{
Matrix result = inputBatch;
if(result.buffer != NULL)
{
for(int i = 0; i < model.numberOfLayers; i++)
{
Matrix biasResult;
Matrix weightResult;
weightResult = multiply(model.layers[i].weights, result);
clearMatrix(&result);
biasResult = add(model.layers[i].biases, weightResult);
clearMatrix(&weightResult);
if(model.layers[i].activation != NULL)
model.layers[i].activation(&biasResult);
result = biasResult;
if (layerBuffer != NULL)
model.layers = layerBuffer;
else {
clearModel(&model);
break;
}
}
return result;
model.layers[model.numberOfLayers] = layer;
model.numberOfLayers++;
inputDimension = outputDimension;
outputDimension = readDimension(file);
}
}
fclose(file);
assignActivations(model);
}
return model;
}
unsigned char *argmax(const Matrix matrix)
{
unsigned char *maxIdx = NULL;
static Matrix imageBatchToMatrixOfImageVectors(const GrayScaleImage images[],
unsigned int count) {
Matrix matrix = {0, 0, NULL}; // falsch herum
if(matrix.rows > 0 && matrix.cols > 0)
{
maxIdx = (unsigned char *)malloc(sizeof(unsigned char) * matrix.cols);
if (count > 0 && images != NULL) {
matrix = createMatrix(images[0].height * images[0].width, count);
if(maxIdx != NULL)
{
for(int colIdx = 0; colIdx < matrix.cols; colIdx++)
{
maxIdx[colIdx] = 0;
for(int rowIdx = 1; rowIdx < matrix.rows; rowIdx++)
{
if(getMatrixAt(matrix, rowIdx, colIdx) > getMatrixAt(matrix, maxIdx[colIdx], colIdx))
maxIdx[colIdx] = rowIdx;
}
}
if (matrix.buffer != NULL) {
for (int i = 0; i < count; i++) {
for (int j = 0; j < images[i].width * images[i].height; j++) {
setMatrixAt((MatrixType)images[i].buffer[j], matrix, j, i);
}
}
}
}
return maxIdx;
return matrix;
}
unsigned char *predict(const NeuralNetwork model, const GrayScaleImage images[], unsigned int numberOfImages)
{
Matrix inputBatch = imageBatchToMatrixOfImageVectors(images, numberOfImages);
Matrix outputBatch = forward(model, inputBatch);
static Matrix forward(const NeuralNetwork model, Matrix inputBatch) {
Matrix result = inputBatch;
unsigned char *result = argmax(outputBatch);
clearMatrix(&outputBatch);
return result;
if (result.buffer != NULL) {
for (int i = 0; i < model.numberOfLayers; i++) {
Matrix biasResult;
Matrix weightResult;
weightResult = multiply(model.layers[i].weights, result);
clearMatrix(&result);
biasResult = add(model.layers[i].biases, weightResult);
clearMatrix(&weightResult);
if (model.layers[i].activation != NULL)
model.layers[i].activation(&biasResult);
result = biasResult;
}
}
return result;
}
void clearModel(NeuralNetwork *model)
{
if(model != NULL)
{
for(int i = 0; i < model->numberOfLayers; i++)
{
clearLayer(&model->layers[i]);
unsigned char *argmax(const Matrix matrix) {
unsigned char *maxIdx = NULL;
if (matrix.rows > 0 && matrix.cols > 0) {
maxIdx = (unsigned char *)malloc(sizeof(unsigned char) * matrix.cols);
if (maxIdx != NULL) {
for (int colIdx = 0; colIdx < matrix.cols; colIdx++) {
maxIdx[colIdx] = 0;
for (int rowIdx = 1; rowIdx < matrix.rows; rowIdx++) {
if (getMatrixAt(matrix, rowIdx, colIdx) >
getMatrixAt(matrix, maxIdx[colIdx], colIdx))
maxIdx[colIdx] = rowIdx;
}
model->layers = NULL;
model->numberOfLayers = 0;
}
}
}
return maxIdx;
}
unsigned char *predict(const NeuralNetwork model, const GrayScaleImage images[],
unsigned int numberOfImages) {
Matrix inputBatch = imageBatchToMatrixOfImageVectors(images, numberOfImages);
Matrix outputBatch = forward(model, inputBatch);
unsigned char *result = argmax(outputBatch);
clearMatrix(&outputBatch);
return result;
}
void clearModel(NeuralNetwork *model) {
if (model != NULL) {
for (int i = 0; i < model->numberOfLayers; i++) {
clearLayer(&model->layers[i]);
}
model->layers = NULL;
model->numberOfLayers = 0;
}
}

View File

@ -1,242 +1,331 @@
#include "neuralNetwork.h"
#include "unity.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "unity.h"
#include "neuralNetwork.h"
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
/*typedef struct
{
// TODO
}
Matrix weights;
Matrix biases;
ActivationFunctionType activation;
} Layer;
void test_loadModelReturnsCorrectNumberOfLayers(void)
typedef struct
{
const char *path = "some__nn_test_file.info2";
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2};
Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3};
MatrixType buffer3[] = {1, 2, 3};
MatrixType buffer4[] = {1, 2};
Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1};
Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1};
Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}};
Layer *layers;
unsigned int numberOfLayers;
} NeuralNetwork;*/
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2};
NeuralNetwork netUnderTest;
/*Layer: Ebene im neuronalen Netzwerk, besteht aus mehreren Neuronen
Input-Layer: Eingabedatei
Hidden-Layer: verarbeiten die Daten
Output-Layer: Ergebnis
prepareNeuralNetworkFile(path, expectedNet);
netUnderTest = loadModel(path);
remove(path);
Gewichte: bestimmen, wie stark ein Eingangssignal auf ein Neuron wirkt
TEST_ASSERT_EQUAL_INT(expectedNet.numberOfLayers, netUnderTest.numberOfLayers);
clearModel(&netUnderTest);
}
Dimension: Form der Matrizen für einen Layer*/
void test_loadModelReturnsCorrectWeightDimensions(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
// speichert NeuralNetwork nn in binäre Datei->erzeugt Dateiformat
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) {
FILE *fptr = fopen(path, "wb"); // Binärdatei zum Schreiben öffnen
if (fptr == NULL)
return; // file konnte nicht geöffnet werden
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
// Header ist Erkennungsstring am Anfang der Datei, loadmodel erkennt
// Dateiformat
const char header[] =
"__info2_neural_network_file_format__"; // header vor jedem Layer
fwrite(header, sizeof(char), strlen(header), fptr);
prepareNeuralNetworkFile(path, expectedNet);
// Wenn es keine Layer gibt, 0 eintragen, LoadModel gibt 0 zurück
if (nn.numberOfLayers == 0) {
int zero = 0;
fwrite(&zero, sizeof(int), 1, fptr);
fclose(fptr);
return;
}
netUnderTest = loadModel(path);
remove(path);
// Layer 0, inputDimension: Anzahl Input-Neuronen, outputDimension: Anzahl
// Output-Neuronen
int inputDim = (int)nn.layers[0].weights.cols;
int outputDim = (int)nn.layers[0].weights.rows;
fwrite(&inputDim, sizeof(int), 1, fptr);
fwrite(&outputDim, sizeof(int), 1, fptr);
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols);
clearModel(&netUnderTest);
}
/* 3) Für jede Layer in Reihenfolge: Gewichte (output x input), Biases (output
x 1). Zwischen Layern wird nur die nächste outputDimension (int)
geschrieben. */
for (int i = 0; i < nn.numberOfLayers; i++) {
Layer layer = nn.layers[i];
void test_loadModelReturnsCorrectBiasDimensions(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
int wrows = (int)layer.weights.rows;
int wcols = (int)layer.weights.cols;
int wcount = wrows * wcols;
int bcount =
layer.biases.rows * layer.biases.cols; /* normalerweise rows * 1 */
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
netUnderTest = loadModel(path);
remove(path);
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.rows, netUnderTest.layers[0].biases.rows);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.cols, netUnderTest.layers[0].biases.cols);
clearModel(&netUnderTest);
}
void test_loadModelReturnsCorrectWeights(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
netUnderTest = loadModel(path);
remove(path);
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols);
int n = netUnderTest.layers[0].weights.rows * netUnderTest.layers[0].weights.cols;
TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].weights.buffer, netUnderTest.layers[0].weights.buffer, n);
clearModel(&netUnderTest);
}
void test_loadModelReturnsCorrectBiases(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
netUnderTest = loadModel(path);
remove(path);
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols);
int n = netUnderTest.layers[0].biases.rows * netUnderTest.layers[0].biases.cols;
TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].biases.buffer, netUnderTest.layers[0].biases.buffer, n);
clearModel(&netUnderTest);
}
void test_loadModelFailsOnWrongFileTag(void)
{
const char *path = "some_nn_test_file.info2";
NeuralNetwork netUnderTest;
FILE *file = fopen(path, "wb");
if(file != NULL)
{
const char *fileTag = "info2_neural_network_file_format";
fwrite(fileTag, sizeof(char), strlen(fileTag), file);
fclose(file);
/* Gewichte (MatrixType binär) */
if (wcount > 0 && layer.weights.buffer != NULL) {
fwrite(layer.weights.buffer, sizeof(MatrixType), (size_t)wcount, fptr);
}
netUnderTest = loadModel(path);
remove(path);
TEST_ASSERT_NULL(netUnderTest.layers);
TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers);
}
void test_clearModelSetsMembersToNull(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
netUnderTest = loadModel(path);
remove(path);
TEST_ASSERT_NOT_NULL(netUnderTest.layers);
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
clearModel(&netUnderTest);
TEST_ASSERT_NULL(netUnderTest.layers);
TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers);
}
static void someActivation(Matrix *matrix)
{
for(int i = 0; i < matrix->rows * matrix->cols; i++)
{
matrix->buffer[i] = fabs(matrix->buffer[i]);
/* Biases (MatrixType binär) */
if (bcount > 0 && layer.biases.buffer != NULL) {
fwrite(layer.biases.buffer, sizeof(MatrixType), (size_t)bcount, fptr);
}
/* Für die nächste Layer: falls vorhanden, schreibe deren outputDimension */
if (i + 1 < nn.numberOfLayers) {
int nextOutput = (int)nn.layers[i + 1].weights.rows;
fwrite(&nextOutput, sizeof(int), 1, fptr);
} else {
/* Letzte Layer: wir können das Ende signalisieren, indem wir ein 0
schreiben. loadModel liest dann outputDimension = 0 und beendet die
Schleife. */
int zero = 0;
fwrite(&zero, sizeof(int), 1, fptr);
}
}
fclose(fptr);
}
void test_predictReturnsCorrectLabels(void)
{
const unsigned char expectedLabels[] = {4, 2};
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}};
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4};
Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2};
Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3};
MatrixType biasBuffer1[] = {200, 0};
MatrixType biasBuffer2[] = {0, -100, 0};
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
{.weights=weights2, .biases=biases2, .activation=someActivation}, \
{.weights=weights3, .biases=biases3, .activation=someActivation}};
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
TEST_ASSERT_NOT_NULL(predictedLabels);
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
TEST_ASSERT_EQUAL_UINT8_ARRAY(expectedLabels, predictedLabels, n);
free(predictedLabels);
void test_loadModelReturnsCorrectNumberOfLayers(void) {
const char *path = "some__nn_test_file.info2";
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
Matrix weights1 = {.buffer = buffer1, .rows = 3, .cols = 2};
Matrix weights2 = {.buffer = buffer2, .rows = 2, .cols = 3};
MatrixType buffer3[] = {1, 2, 3};
MatrixType buffer4[] = {1, 2};
Matrix biases1 = {.buffer = buffer3, .rows = 3, .cols = 1};
Matrix biases2 = {.buffer = buffer4, .rows = 2, .cols = 1};
Layer layers[] = {{.weights = weights1, .biases = biases1},
{.weights = weights2, .biases = biases2}};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 2};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
netUnderTest = loadModel(path);
remove(path);
TEST_ASSERT_EQUAL_INT(expectedNet.numberOfLayers,
netUnderTest.numberOfLayers);
clearModel(&netUnderTest);
}
void test_loadModelReturnsCorrectWeightDimensions(void) {
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
netUnderTest = loadModel(path);
remove(path);
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows,
netUnderTest.layers[0].weights.rows);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols,
netUnderTest.layers[0].weights.cols);
clearModel(&netUnderTest);
}
void test_loadModelReturnsCorrectBiasDimensions(void) {
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
netUnderTest = loadModel(path);
remove(path);
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.rows,
netUnderTest.layers[0].biases.rows);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.cols,
netUnderTest.layers[0].biases.cols);
clearModel(&netUnderTest);
}
void test_loadModelReturnsCorrectWeights(void) {
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
netUnderTest = loadModel(path);
remove(path);
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows,
netUnderTest.layers[0].weights.rows);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols,
netUnderTest.layers[0].weights.cols);
int n =
netUnderTest.layers[0].weights.rows * netUnderTest.layers[0].weights.cols;
TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].weights.buffer,
netUnderTest.layers[0].weights.buffer, n);
clearModel(&netUnderTest);
}
void test_loadModelReturnsCorrectBiases(void) {
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
netUnderTest = loadModel(path);
remove(path);
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows,
netUnderTest.layers[0].weights.rows);
TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols,
netUnderTest.layers[0].weights.cols);
int n =
netUnderTest.layers[0].biases.rows * netUnderTest.layers[0].biases.cols;
TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].biases.buffer,
netUnderTest.layers[0].biases.buffer, n);
clearModel(&netUnderTest);
}
void test_loadModelFailsOnWrongFileTag(void) {
const char *path = "some_nn_test_file.info2";
NeuralNetwork netUnderTest;
FILE *file = fopen(path, "wb");
if (file != NULL) {
const char *fileTag = "info2_neural_network_file_format";
fwrite(fileTag, sizeof(char), strlen(fileTag), file);
fclose(file);
}
netUnderTest = loadModel(path);
remove(path);
TEST_ASSERT_NULL(netUnderTest.layers);
TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers);
}
void test_clearModelSetsMembersToNull(void) {
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
netUnderTest = loadModel(path);
remove(path);
TEST_ASSERT_NOT_NULL(netUnderTest.layers);
TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0);
clearModel(&netUnderTest);
TEST_ASSERT_NULL(netUnderTest.layers);
TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers);
}
static void someActivation(Matrix *matrix) {
for (int i = 0; i < matrix->rows * matrix->cols; i++) {
matrix->buffer[i] = fabs(matrix->buffer[i]);
}
}
void test_predictReturnsCorrectLabels(void) {
const unsigned char expectedLabels[] = {4, 2};
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
GrayScaleImage inputImages[] = {
{.buffer = imageBuffer1, .width = 2, .height = 2},
{.buffer = imageBuffer2, .width = 2, .height = 2}};
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22,
23, -24, 25, 26, 27, -28, -29};
Matrix weights1 = {.buffer = weightsBuffer1, .rows = 2, .cols = 4};
Matrix weights2 = {.buffer = weightsBuffer2, .rows = 3, .cols = 2};
Matrix weights3 = {.buffer = weightsBuffer3, .rows = 5, .cols = 3};
MatrixType biasBuffer1[] = {200, 0};
MatrixType biasBuffer2[] = {0, -100, 0};
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
Matrix biases1 = {.buffer = biasBuffer1, .rows = 2, .cols = 1};
Matrix biases2 = {.buffer = biasBuffer2, .rows = 3, .cols = 1};
Matrix biases3 = {.buffer = biasBuffer3, .rows = 5, .cols = 1};
Layer layers[] = {
{.weights = weights1, .biases = biases1, .activation = someActivation},
{.weights = weights2, .biases = biases2, .activation = someActivation},
{.weights = weights3, .biases = biases3, .activation = someActivation}};
NeuralNetwork netUnderTest = {.layers = layers, .numberOfLayers = 3};
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
TEST_ASSERT_NOT_NULL(predictedLabels);
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
TEST_ASSERT_EQUAL_UINT8_ARRAY(expectedLabels, predictedLabels, n);
free(predictedLabels);
}
void setUp(void) {
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
}
void tearDown(void) {
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
}
int main()
{
UNITY_BEGIN();
int main() {
UNITY_BEGIN();
printf("\n============================\nNeural network tests\n============================\n");
RUN_TEST(test_loadModelReturnsCorrectNumberOfLayers);
RUN_TEST(test_loadModelReturnsCorrectWeightDimensions);
RUN_TEST(test_loadModelReturnsCorrectBiasDimensions);
RUN_TEST(test_loadModelReturnsCorrectWeights);
RUN_TEST(test_loadModelReturnsCorrectBiases);
RUN_TEST(test_loadModelFailsOnWrongFileTag);
RUN_TEST(test_clearModelSetsMembersToNull);
RUN_TEST(test_predictReturnsCorrectLabels);
printf("\n============================\nNeural network "
"tests\n============================\n");
RUN_TEST(test_loadModelReturnsCorrectNumberOfLayers);
RUN_TEST(test_loadModelReturnsCorrectWeightDimensions);
RUN_TEST(test_loadModelReturnsCorrectBiasDimensions);
RUN_TEST(test_loadModelReturnsCorrectWeights);
RUN_TEST(test_loadModelReturnsCorrectBiases);
RUN_TEST(test_loadModelFailsOnWrongFileTag);
RUN_TEST(test_clearModelSetsMembersToNull);
RUN_TEST(test_predictReturnsCorrectLabels);
return UNITY_END();
return UNITY_END();
}