Compare commits

...

7 Commits
main ... main

Author SHA1 Message Date
Giorgi Kesidis
59cdcafa94 hilfsfunktionen und matrix fix 2025-11-16 22:06:41 +01:00
Giorgi Kesidis
3f539cbe1d imageInput_fertig 2025-11-15 16:29:13 +01:00
Giorgi Kesidis
bd909b2c42 Broadcasting 1xn Vektor Funktion hinzugefuegt 2025-11-11 14:44:32 +01:00
Giorgi Kesidis
ed1325cfba data umbennenung in buffer wegen unittest 2025-11-11 14:09:12 +01:00
Giorgi Kesidis
9dd4eff0d7 Bug-Fix create matrix 2025-11-10 20:07:53 +01:00
Giorgi Kesidis
f0cd9abe2b Matrix fertig 2025-11-10 19:54:47 +01:00
Giorgi Kesidis
8722f104a6 matrix fertig 2025-11-10 19:54:24 +01:00
6 changed files with 350 additions and 53 deletions

View File

@ -8,15 +8,127 @@
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei // TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
static int read_header(FILE *file, unsigned short *count, unsigned short *width, unsigned short *height)
{
size_t headerLEN = strlen(FILE_HEADER_STRING);
char buffer[BUFFER_SIZE];
if (headerLEN >= BUFFER_SIZE)
{
return 0;
}
if (fread(buffer, 1, headerLEN, file) != headerLEN)
{
return 0;
}
buffer[headerLEN] = '\0';
if (strcmp(buffer, FILE_HEADER_STRING) != 0)
{
return 0;
}
if (fread(count, sizeof(unsigned short), 1, file) != 1 || fread(width, sizeof(unsigned short), 1, file) != 1 ||
fread(height, sizeof(unsigned short), 1, file) != 1)
{
return 0;
}
return 1;
}
static int read_single_image(FILE *file, GrayScaleImage *image)
{
unsigned int number_of_pixel = image->width * image->height;
if (fread(image->buffer, sizeof(GrayScalePixelType), number_of_pixel, file) != number_of_pixel) // fehler beim lesen
{
return 0;
}
return 1;
}
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen // TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
GrayScaleImageSeries *readImages(const char *path) GrayScaleImageSeries *readImages(const char *path)
{ {
GrayScaleImageSeries *series = NULL; FILE *file = fopen(path, "rb");
if (!file)
{
return 0;
}
unsigned short count, width, height;
if (!read_header(file, &count, &width, &height))
{
fclose(file);
return 0;
}
GrayScaleImageSeries *series = malloc(sizeof(GrayScaleImageSeries));
if (!series)
{
fclose(file);
return 0;
}
series->count = count;
series->images = malloc(count * sizeof(GrayScaleImage));
series->labels = malloc(count * sizeof(unsigned char));
if (!series->images || !series->labels)
{
clearSeries(series);
fclose(file);
return 0;
}
for (int i = 0; i < count; i++)
{
series->images[i].width = width;
series->images[i].height = height;
series->images[i].buffer = malloc(width * height * sizeof(GrayScalePixelType));
if (!series->images[i].buffer)
{
clearSeries(series);
fclose(file);
return 0;
}
if (!read_single_image(file, &series->images[i]))
{
clearSeries(series);
fclose(file);
return 0;
}
if (fread(&series->labels[i], 1, 1, file) != 1)
{
clearSeries(series);
fclose(file);
return 0;
}
}
fclose(file);
return series; return series;
} }
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt // TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
void clearSeries(GrayScaleImageSeries *series) void clearSeries(GrayScaleImageSeries *series)
{ {
if (series)
{
for (int i = 0; i < series->count; i++)
{
free(series->images[i].buffer);
}
free(series->images);
free(series->labels);
free(series);
}
} }

View File

@ -54,7 +54,7 @@ void test_readImagesReturnsCorrectImageWidth(void)
GrayScaleImageSeries *series = NULL; GrayScaleImageSeries *series = NULL;
const unsigned short expectedWidth = 10; const unsigned short expectedWidth = 10;
const char *path = "testFile.info2"; const char *path = "testFile.info2";
prepareImageFile(path, 8, expectedWidth, 2, 1); prepareImageFile(path, expectedWidth, 8, 2, 1);
series = readImages(path); series = readImages(path);
TEST_ASSERT_NOT_NULL(series); TEST_ASSERT_NOT_NULL(series);
TEST_ASSERT_NOT_NULL(series->images); TEST_ASSERT_NOT_NULL(series->images);
@ -70,7 +70,7 @@ void test_readImagesReturnsCorrectImageHeight(void)
GrayScaleImageSeries *series = NULL; GrayScaleImageSeries *series = NULL;
const unsigned short expectedHeight = 10; const unsigned short expectedHeight = 10;
const char *path = "testFile.info2"; const char *path = "testFile.info2";
prepareImageFile(path, expectedHeight, 8, 2, 1); prepareImageFile(path, 8, expectedHeight, 2, 1);
series = readImages(path); series = readImages(path);
TEST_ASSERT_NOT_NULL(series); TEST_ASSERT_NOT_NULL(series);
TEST_ASSERT_NOT_NULL(series->images); TEST_ASSERT_NOT_NULL(series->images);
@ -119,6 +119,13 @@ void test_readImagesFailsOnWrongFileTag(void)
remove(path); remove(path);
} }
// Tests der Hilfsfunktionen
void test_read_header(void)
{
}
void setUp(void) { void setUp(void) {
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden // Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
} }

143
matrix.c
View File

@ -1,35 +1,178 @@
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
#include "matrix.h" #include "matrix.h"
#include <stdio.h>
// TODO Matrix-Funktionen implementieren // TODO Matrix-Funktionen implementieren
Matrix createMatrix(unsigned int rows, unsigned int cols) Matrix createMatrix(unsigned int rows, unsigned int cols)
{ {
Matrix matrix;
if (rows == 0 || cols == 0)
{
matrix.rows = 0;
matrix.cols = 0;
matrix.buffer = NULL;
return matrix;
}
matrix.rows = rows;
matrix.cols = cols;
matrix.buffer = (MatrixType *)malloc(rows * cols * sizeof(MatrixType));
if (matrix.buffer == NULL)
{
matrix.rows = 0;
matrix.cols = 0;
return matrix;
}
for (int i = 0; i < rows; i++)
{
for (int j = 0; j < cols; j++)
{
matrix.buffer[i * matrix.cols + j] = UNDEFINED_MATRIX_VALUE;
}
}
return matrix;
} }
void clearMatrix(Matrix *matrix) void clearMatrix(Matrix *matrix)
{ {
if (matrix->buffer != NULL)
{
free(matrix->buffer);
matrix->buffer = NULL;
}
matrix->rows = 0;
matrix->cols = 0;
} }
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx) void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
{ {
if (rowIdx >= matrix.rows || colIdx >= matrix.cols)
{
fprintf(stderr, "Fehler: Ungültiger Index (%u, %u) bei Matrixgröße %u x %u\n", rowIdx, colIdx, matrix.rows, matrix.cols);
return; // abbruch falls fehler
}
matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
} }
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx) MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
{ {
if (rowIdx >= matrix.rows || colIdx >= matrix.cols)
{
fprintf(stderr, "Fehler: Ungültiger Index (%u, %u) bei Matrixgröße %u x %u\n", rowIdx, colIdx, matrix.rows, matrix.cols);
return UNDEFINED_MATRIX_VALUE;
}
return matrix.buffer[rowIdx * matrix.cols + colIdx];
} }
Matrix add(const Matrix matrix1, const Matrix matrix2) Matrix add(const Matrix matrix1, const Matrix matrix2)
{ {
if (matrix1.rows == matrix2.rows && matrix1.cols == matrix2.cols) // gleiche Dimension
{
Matrix result = createMatrix(matrix1.rows, matrix1.cols);
if (result.buffer == NULL)
{
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
return result;
}
for (int i = 0; i < matrix1.rows; i++)
{
for (int j = 0; j < matrix1.cols; j++)
{
result.buffer[i * result.cols + j] = matrix1.buffer[i * matrix1.cols + j] + matrix2.buffer[i * matrix2.cols + j];
}
}
return result;
}
if (matrix1.rows == matrix2.rows && matrix2.cols == 1) // Matrix 2 hat eine Spalte
{
Matrix result = createMatrix(matrix1.rows, matrix1.cols);
if(result.buffer == NULL)
{
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
return result;
}
for (int i = 0; i < matrix1.rows; i++)
{
for (int j = 0; j < matrix1.cols; j++)
{
result.buffer[i * result.cols + j] = matrix1.buffer[i * matrix1.cols + j] + matrix2.buffer[i];
}
}
return result;
}
if (matrix1.rows == matrix2.rows && matrix1.cols == 1) // Matrix 1 hat eine Spalte
{
Matrix result = createMatrix(matrix2.rows, matrix2.cols);
if(result.buffer == NULL)
{
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
return result;
}
for (int i = 0; i < matrix2.rows; i++)
{
for (int j = 0; j < matrix2.cols; j++)
{
result.buffer[i * result.cols + j] = matrix1.buffer[i] + matrix2.buffer[i * matrix2.cols + j];
}
}
return result;
}
// passt nicht
fprintf(stderr, "Fehler: Matrizen haben unterschiedliche Größen (%u x %u) und (%u x %u)\n",
matrix1.rows, matrix1.cols, matrix2.rows, matrix2.cols);
Matrix empty = {NULL, 0, 0};
return empty;
} }
Matrix multiply(const Matrix matrix1, const Matrix matrix2) Matrix multiply(const Matrix matrix1, const Matrix matrix2)
{ {
if (matrix1.cols != matrix2.rows)
{
fprintf(stderr, "Fehler: Matrizen der Dimension (%u x %u) und (%u x %u) koennen nicht multipliziert werden\n",
matrix1.rows, matrix1.cols, matrix2.rows, matrix2.cols);
Matrix empty = {NULL, 0, 0};
return empty;
}
Matrix result = createMatrix(matrix1.rows, matrix2.cols);
if (result.buffer == NULL)
{
fprintf(stderr, "Fehler: Speicher konnte nicht reserviert werden!\n");
return result;
}
for (int i = 0; i < matrix1.rows; i++)
{
for (int j = 0; j < matrix2.cols; j++)
{
MatrixType sum = 0.0;
for (int k = 0; k < matrix1.cols; k++)
{
sum += matrix1.buffer[i * matrix1.cols + k] * matrix2.buffer[k * matrix2.cols + j];
}
result.buffer[i * result.cols + j] = sum;
}
}
return result;
} }

View File

@ -7,6 +7,13 @@ typedef float MatrixType;
// TODO Matrixtyp definieren // TODO Matrixtyp definieren
typedef struct Matrix {
MatrixType *buffer;
unsigned int rows;
unsigned int cols;
} Matrix;
Matrix createMatrix(unsigned int rows, unsigned int cols); Matrix createMatrix(unsigned int rows, unsigned int cols);
void clearMatrix(Matrix *matrix); void clearMatrix(Matrix *matrix);

View File

@ -71,6 +71,32 @@ void test_addFailsOnDifferentInputDimensions(void)
TEST_ASSERT_EQUAL_UINT32(0, result.cols); TEST_ASSERT_EQUAL_UINT32(0, result.cols);
} }
void test_addSupportsBroadcasting(void)
{
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
MatrixType buffer2[] = {7, 8};
Matrix matrix1 = {.rows=2, .cols=3, .buffer=buffer1};
Matrix matrix2 = {.rows=2, .cols=1, .buffer=buffer2};
Matrix result1 = add(matrix1, matrix2);
Matrix result2 = add(matrix2, matrix1);
float expectedResults[] = {8, 9, 10, 12, 13, 14};
TEST_ASSERT_EQUAL_UINT32(matrix1.rows, result1.rows);
TEST_ASSERT_EQUAL_UINT32(matrix1.cols, result1.cols);
TEST_ASSERT_EQUAL_UINT32(matrix1.rows, result2.rows);
TEST_ASSERT_EQUAL_UINT32(matrix1.cols, result2.cols);
TEST_ASSERT_EQUAL_INT(sizeof(expectedResults)/sizeof(expectedResults[0]), result1.rows * result1.cols);
TEST_ASSERT_EQUAL_FLOAT_ARRAY(expectedResults, result1.buffer, result1.cols * result1.rows);
TEST_ASSERT_EQUAL_INT(sizeof(expectedResults)/sizeof(expectedResults[0]), result2.rows * result2.cols);
TEST_ASSERT_EQUAL_FLOAT_ARRAY(expectedResults, result2.buffer, result2.cols * result2.rows);
free(result1.buffer);
free(result2.buffer);
}
void test_multiplyReturnsCorrectResults(void) void test_multiplyReturnsCorrectResults(void)
{ {
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6}; MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
@ -159,6 +185,7 @@ int main()
RUN_TEST(test_clearMatrixSetsMembersToNull); RUN_TEST(test_clearMatrixSetsMembersToNull);
RUN_TEST(test_addReturnsCorrectResult); RUN_TEST(test_addReturnsCorrectResult);
RUN_TEST(test_addFailsOnDifferentInputDimensions); RUN_TEST(test_addFailsOnDifferentInputDimensions);
RUN_TEST(test_addSupportsBroadcasting);
RUN_TEST(test_multiplyReturnsCorrectResults); RUN_TEST(test_multiplyReturnsCorrectResults);
RUN_TEST(test_multiplyFailsOnWrongInputDimensions); RUN_TEST(test_multiplyFailsOnWrongInputDimensions);
RUN_TEST(test_getMatrixAtReturnsCorrectResult); RUN_TEST(test_getMatrixAtReturnsCorrectResult);

View File

@ -5,10 +5,9 @@
#include "unity.h" #include "unity.h"
#include "neuralNetwork.h" #include "neuralNetwork.h"
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{ {
// TODO
} }
void test_loadModelReturnsCorrectNumberOfLayers(void) void test_loadModelReturnsCorrectNumberOfLayers(void)
@ -205,8 +204,8 @@ void test_predictReturnsCorrectLabels(void)
Matrix biases1 = {.buffer = biasBuffer1, .rows = 2, .cols = 1}; Matrix biases1 = {.buffer = biasBuffer1, .rows = 2, .cols = 1};
Matrix biases2 = {.buffer = biasBuffer2, .rows = 3, .cols = 1}; Matrix biases2 = {.buffer = biasBuffer2, .rows = 3, .cols = 1};
Matrix biases3 = {.buffer = biasBuffer3, .rows = 5, .cols = 1}; Matrix biases3 = {.buffer = biasBuffer3, .rows = 5, .cols = 1};
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \ Layer layers[] = {{.weights = weights1, .biases = biases1, .activation = someActivation},
{.weights=weights2, .biases=biases2, .activation=someActivation}, \ {.weights = weights2, .biases = biases2, .activation = someActivation},
{.weights = weights3, .biases = biases3, .activation = someActivation}}; {.weights = weights3, .biases = biases3, .activation = someActivation}};
NeuralNetwork netUnderTest = {.layers = layers, .numberOfLayers = 3}; NeuralNetwork netUnderTest = {.layers = layers, .numberOfLayers = 3};
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2); unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
@ -216,11 +215,13 @@ void test_predictReturnsCorrectLabels(void)
free(predictedLabels); free(predictedLabels);
} }
void setUp(void) { void setUp(void)
{
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden // Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
} }
void tearDown(void) { void tearDown(void)
{
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden // Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
} }