#include #include #include #include #include "unity.h" #include "neuralNetwork.h" static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) { // TODO } void test_loadModelReturnsCorrectNumberOfLayers(void) { const char *path = "some__nn_test_file.info2"; MatrixType buffer1[] = {1, 2, 3, 4, 5, 6}; MatrixType buffer2[] = {1, 2, 3, 4, 5, 6}; Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2}; Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3}; MatrixType buffer3[] = {1, 2, 3}; MatrixType buffer4[] = {1, 2}; Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1}; Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1}; Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}}; NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2}; NeuralNetwork netUnderTest; prepareNeuralNetworkFile(path, expectedNet); netUnderTest = loadModel(path); remove(path); TEST_ASSERT_EQUAL_INT(expectedNet.numberOfLayers, netUnderTest.numberOfLayers); clearModel(&netUnderTest); } void test_loadModelReturnsCorrectWeightDimensions(void) { const char *path = "some__nn_test_file.info2"; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; MatrixType biasBuffer[] = {7, 8, 9}; Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Layer layers[] = {{.weights=weights, .biases=biases}}; NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork netUnderTest; prepareNeuralNetworkFile(path, expectedNet); netUnderTest = loadModel(path); remove(path); TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0); TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows); TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols); clearModel(&netUnderTest); } void test_loadModelReturnsCorrectBiasDimensions(void) { const char *path = "some__nn_test_file.info2"; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; MatrixType biasBuffer[] = {7, 8, 9}; Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Layer layers[] = {{.weights=weights, .biases=biases}}; NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork netUnderTest; prepareNeuralNetworkFile(path, expectedNet); netUnderTest = loadModel(path); remove(path); TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0); TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.rows, netUnderTest.layers[0].biases.rows); TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].biases.cols, netUnderTest.layers[0].biases.cols); clearModel(&netUnderTest); } void test_loadModelReturnsCorrectWeights(void) { const char *path = "some__nn_test_file.info2"; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; MatrixType biasBuffer[] = {7, 8, 9}; Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Layer layers[] = {{.weights=weights, .biases=biases}}; NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork netUnderTest; prepareNeuralNetworkFile(path, expectedNet); netUnderTest = loadModel(path); remove(path); TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0); TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows); TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols); int n = netUnderTest.layers[0].weights.rows * netUnderTest.layers[0].weights.cols; TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].weights.buffer, netUnderTest.layers[0].weights.buffer, n); clearModel(&netUnderTest); } void test_loadModelReturnsCorrectBiases(void) { const char *path = "some__nn_test_file.info2"; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; MatrixType biasBuffer[] = {7, 8, 9}; Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Layer layers[] = {{.weights=weights, .biases=biases}}; NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork netUnderTest; prepareNeuralNetworkFile(path, expectedNet); netUnderTest = loadModel(path); remove(path); TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0); TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.rows, netUnderTest.layers[0].weights.rows); TEST_ASSERT_EQUAL_INT(expectedNet.layers[0].weights.cols, netUnderTest.layers[0].weights.cols); int n = netUnderTest.layers[0].biases.rows * netUnderTest.layers[0].biases.cols; TEST_ASSERT_EQUAL_INT_ARRAY(expectedNet.layers[0].biases.buffer, netUnderTest.layers[0].biases.buffer, n); clearModel(&netUnderTest); } void test_loadModelFailsOnWrongFileTag(void) { const char *path = "some_nn_test_file.info2"; NeuralNetwork netUnderTest; FILE *file = fopen(path, "wb"); if(file != NULL) { const char *fileTag = "info2_neural_network_file_format"; fwrite(fileTag, sizeof(char), strlen(fileTag), file); fclose(file); } netUnderTest = loadModel(path); remove(path); TEST_ASSERT_NULL(netUnderTest.layers); TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers); } void test_clearModelSetsMembersToNull(void) { const char *path = "some__nn_test_file.info2"; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; MatrixType biasBuffer[] = {7, 8, 9}; Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Layer layers[] = {{.weights=weights, .biases=biases}}; NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork netUnderTest; prepareNeuralNetworkFile(path, expectedNet); netUnderTest = loadModel(path); remove(path); TEST_ASSERT_NOT_NULL(netUnderTest.layers); TEST_ASSERT_TRUE(netUnderTest.numberOfLayers > 0); clearModel(&netUnderTest); TEST_ASSERT_NULL(netUnderTest.layers); TEST_ASSERT_EQUAL_INT(0, netUnderTest.numberOfLayers); } static void someActivation(Matrix *matrix) { for(int i = 0; i < matrix->rows * matrix->cols; i++) { matrix->buffer[i] = fabs(matrix->buffer[i]); } } void test_predictReturnsCorrectLabels(void) { const unsigned char expectedLabels[] = {4, 2}; GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17}; GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128}; GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}}; MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8}; MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14}; MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29}; Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4}; Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2}; Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3}; MatrixType biasBuffer1[] = {200, 0}; MatrixType biasBuffer2[] = {0, -100, 0}; MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0}; Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1}; Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1}; Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1}; Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \ {.weights=weights2, .biases=biases2, .activation=someActivation}, \ {.weights=weights3, .biases=biases3, .activation=someActivation}}; NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3}; unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2); TEST_ASSERT_NOT_NULL(predictedLabels); int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0])); TEST_ASSERT_EQUAL_UINT8_ARRAY(expectedLabels, predictedLabels, n); free(predictedLabels); } void setUp(void) { // Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden } void tearDown(void) { // Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden } int main() { UNITY_BEGIN(); printf("\n============================\nNeural network tests\n============================\n"); RUN_TEST(test_loadModelReturnsCorrectNumberOfLayers); RUN_TEST(test_loadModelReturnsCorrectWeightDimensions); RUN_TEST(test_loadModelReturnsCorrectBiasDimensions); RUN_TEST(test_loadModelReturnsCorrectWeights); RUN_TEST(test_loadModelReturnsCorrectBiases); RUN_TEST(test_loadModelFailsOnWrongFileTag); RUN_TEST(test_clearModelSetsMembersToNull); RUN_TEST(test_predictReturnsCorrectLabels); return UNITY_END(); }