2025-12-12 14:33:45 +01:00

139 lines
4.1 KiB
C

#include <string.h>
#include "stack.h"
#include "bintree.h"
//TODO: binären Suchbaum implementieren
/* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv),
* `clearTree`: gibt den gesamten Baum frei (rekursiv),
* `treeSize`: zählt die Knoten im Baum (rekursiv),
* `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */
// Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate)
{
// Basisfall: Leerer Baum -> neuen Knoten erstellen
if (root == NULL)
{
TreeNode *newNode = (TreeNode *)malloc(sizeof(TreeNode));
if (newNode == NULL)
return NULL;
// Datenkopie erstellen
newNode->data = malloc(dataSize);
if (newNode->data == NULL)
{
free(newNode);
return NULL;
}
memcpy(newNode->data, data, dataSize);
newNode->left = NULL;
newNode->right = NULL;
// Neues Element wurde hinzugefügt
if (isDuplicate != NULL)
*isDuplicate = 0;
return newNode;
}
// Rekursiver Fall: Vergleiche mit aktuellem Knoten
int cmp = compareFct(data, root->data);
if (cmp < 0)
{
// Kleiner -> links einfügen
root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate);
}
else if (cmp > 0)
{
// Größer -> rechts einfügen
root->right = addToTree(root->right, data, dataSize, compareFct, isDuplicate);
}
else
{
// Gleich -> Duplikat gefunden
if (isDuplicate != NULL)
{
*isDuplicate = 1; // Duplikat erkannt
// Nichts einfügen, nur isDuplicate setzen
}
else
{
// Duplikate erlaubt -> füge rechts ein
root->right = addToTree(root->right, data, dataSize, compareFct, NULL);
}
}
return root;
}
// Statischer Stack für nextTreeData (wie bei strtok)
static StackNode *iteratorStack = NULL;
// Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction.
// Use your implementation of a stack to organize the iterator. Push the root node and all left nodes first. On returning the next element,
// push the top node and push all its left nodes.
void *nextTreeData(TreeNode *root)
{
// Neuer Durchlauf: Stack leeren und initialisieren
if (root != NULL)
{
clearStack(iteratorStack);
iteratorStack = NULL;
// Wurzel und alle linken Knoten auf den Stack
TreeNode *current = root;
while (current != NULL)
{
iteratorStack = push(iteratorStack, current);
current = current->left;
}
}
// Stack leer -> keine weiteren Elemente
if (iteratorStack == NULL)
return NULL;
// Obersten Knoten vom Stack holen
TreeNode *node = (TreeNode *)top(iteratorStack);
iteratorStack = pop(iteratorStack);
// Rechten Teilbaum vorbereiten (alle linken Knoten auf Stack)
TreeNode *current = node->right;
while (current != NULL)
{
iteratorStack = push(iteratorStack, current);
current = current->left;
}
return node->data;
}
// Releases all memory resources (including data copies).
void clearTree(TreeNode *root)
{
if (root == NULL)
return;
// Post-Order: Links -> Rechts -> Wurzel
clearTree(root->left);
clearTree(root->right);
// Datenkopie freigeben
free(root->data);
// Knoten freigeben
free(root);
}
// Returns the number of entries in the tree given by root.
unsigned int treeSize(const TreeNode *root)
{
if (root == NULL)
return 0;
// Rekursiv: 1 (aktueller Knoten) + linker Teilbaum + rechter Teilbaum
return 1 + treeSize(root->left) + treeSize(root->right);
}