# -*- test-case-name: twisted.names.test.test_rfc1982 -*- # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Utilities for handling RFC1982 Serial Number Arithmetic. @see: U{http://tools.ietf.org/html/rfc1982} @var RFC4034_TIME_FORMAT: RRSIG Time field presentation format. The Signature Expiration Time and Inception Time field values MUST be represented either as an unsigned decimal integer indicating seconds since 1 January 1970 00:00:00 UTC, or in the form YYYYMMDDHHmmSS in UTC. See U{RRSIG Presentation Format} """ from __future__ import division, absolute_import import calendar from datetime import datetime, timedelta from twisted.python.compat import nativeString from twisted.python.util import FancyStrMixin RFC4034_TIME_FORMAT = '%Y%m%d%H%M%S' class SerialNumber(FancyStrMixin, object): """ An RFC1982 Serial Number. This class implements RFC1982 DNS Serial Number Arithmetic. SNA is used in DNS and specifically in DNSSEC as defined in RFC4034 in the DNSSEC Signature Expiration and Inception Fields. @see: U{https://tools.ietf.org/html/rfc1982} @see: U{https://tools.ietf.org/html/rfc4034} @ivar _serialBits: See C{serialBits} of L{__init__}. @ivar _number: See C{number} of L{__init__}. @ivar _modulo: The value at which wrapping will occur. @ivar _halfRing: Half C{_modulo}. If another L{SerialNumber} value is larger than this, it would lead to a wrapped value which is larger than the first and comparisons are therefore ambiguous. @ivar _maxAdd: Half C{_modulo} plus 1. If another L{SerialNumber} value is larger than this, it would lead to a wrapped value which is larger than the first. Comparisons with the original value would therefore be ambiguous. """ showAttributes = ( ('_number', 'number', '%d'), ('_serialBits', 'serialBits', '%d'), ) def __init__(self, number, serialBits=32): """ Construct an L{SerialNumber} instance. @param number: An L{int} which will be stored as the modulo C{number % 2 ^ serialBits} @type number: L{int} @param serialBits: The size of the serial number space. The power of two which results in one larger than the largest integer corresponding to a serial number value. @type serialBits: L{int} """ self._serialBits = serialBits self._modulo = 2 ** serialBits self._halfRing = 2 ** (serialBits - 1) self._maxAdd = 2 ** (serialBits - 1) - 1 self._number = int(number) % self._modulo def _convertOther(self, other): """ Check that a foreign object is suitable for use in the comparison or arithmetic magic methods of this L{SerialNumber} instance. Raise L{TypeError} if not. @param other: The foreign L{object} to be checked. @return: C{other} after compatibility checks and possible coercion. @raises: L{TypeError} if C{other} is not compatible. """ if not isinstance(other, SerialNumber): raise TypeError( 'cannot compare or combine %r and %r' % (self, other)) if self._serialBits != other._serialBits: raise TypeError( 'cannot compare or combine SerialNumber instances with ' 'different serialBits. %r and %r' % (self, other)) return other def __str__(self): """ Return a string representation of this L{SerialNumber} instance. @rtype: L{nativeString} """ return nativeString('%d' % (self._number,)) def __int__(self): """ @return: The integer value of this L{SerialNumber} instance. @rtype: L{int} """ return self._number def __eq__(self, other): """ Allow rich equality comparison with another L{SerialNumber} instance. @type other: L{SerialNumber} """ other = self._convertOther(other) return other._number == self._number def __ne__(self, other): """ Allow rich equality comparison with another L{SerialNumber} instance. @type other: L{SerialNumber} """ return not self.__eq__(other) def __lt__(self, other): """ Allow I{less than} comparison with another L{SerialNumber} instance. @type other: L{SerialNumber} """ other = self._convertOther(other) return ( (self._number < other._number and (other._number - self._number) < self._halfRing) or (self._number > other._number and (self._number - other._number) > self._halfRing) ) def __gt__(self, other): """ Allow I{greater than} comparison with another L{SerialNumber} instance. @type other: L{SerialNumber} @rtype: L{bool} """ other = self._convertOther(other) return ( (self._number < other._number and (other._number - self._number) > self._halfRing) or (self._number > other._number and (self._number - other._number) < self._halfRing) ) def __le__(self, other): """ Allow I{less than or equal} comparison with another L{SerialNumber} instance. @type other: L{SerialNumber} @rtype: L{bool} """ other = self._convertOther(other) return self == other or self < other def __ge__(self, other): """ Allow I{greater than or equal} comparison with another L{SerialNumber} instance. @type other: L{SerialNumber} @rtype: L{bool} """ other = self._convertOther(other) return self == other or self > other def __add__(self, other): """ Allow I{addition} with another L{SerialNumber} instance. Serial numbers may be incremented by the addition of a positive integer n, where n is taken from the range of integers [0 .. (2^(SERIAL_BITS - 1) - 1)]. For a sequence number s, the result of such an addition, s', is defined as s' = (s + n) modulo (2 ^ SERIAL_BITS) where the addition and modulus operations here act upon values that are non-negative values of unbounded size in the usual ways of integer arithmetic. Addition of a value outside the range [0 .. (2^(SERIAL_BITS - 1) - 1)] is undefined. @see: U{http://tools.ietf.org/html/rfc1982#section-3.1} @type other: L{SerialNumber} @rtype: L{SerialNumber} @raises: L{ArithmeticError} if C{other} is more than C{_maxAdd} ie more than half the maximum value of this serial number. """ other = self._convertOther(other) if other._number <= self._maxAdd: return SerialNumber( (self._number + other._number) % self._modulo, serialBits=self._serialBits) else: raise ArithmeticError( 'value %r outside the range 0 .. %r' % ( other._number, self._maxAdd,)) def __hash__(self): """ Allow L{SerialNumber} instances to be hashed for use as L{dict} keys. @rtype: L{int} """ return hash(self._number) @classmethod def fromRFC4034DateString(cls, utcDateString): """ Create an L{SerialNumber} instance from a date string in format 'YYYYMMDDHHMMSS' described in U{RFC4034 3.2}. The L{SerialNumber} instance stores the date as a 32bit UNIX timestamp. @see: U{https://tools.ietf.org/html/rfc4034#section-3.1.5} @param utcDateString: A UTC date/time string of format I{YYMMDDhhmmss} which will be converted to seconds since the UNIX epoch. @type utcDateString: L{unicode} @return: An L{SerialNumber} instance containing the supplied date as a 32bit UNIX timestamp. """ parsedDate = datetime.strptime(utcDateString, RFC4034_TIME_FORMAT) secondsSinceEpoch = calendar.timegm(parsedDate.utctimetuple()) return cls(secondsSinceEpoch, serialBits=32) def toRFC4034DateString(self): """ Calculate a date by treating the current L{SerialNumber} value as a UNIX timestamp and return a date string in the format described in U{RFC4034 3.2}. @return: The date string. """ # Can't use datetime.utcfromtimestamp, because it seems to overflow the # signed 32bit int used in the underlying C library. SNA is unsigned # and capable of handling all timestamps up to 2**32. d = datetime(1970, 1, 1) + timedelta(seconds=self._number) return nativeString(d.strftime(RFC4034_TIME_FORMAT)) __all__ = ['SerialNumber']