Compare commits

..

8 Commits

Author SHA1 Message Date
0d561c0175 added stackTest 2025-11-21 12:35:12 +01:00
2950b10931 binTreeTest added 2025-11-21 10:17:58 +01:00
adc3ebc8be makefile unitTest added 2025-11-21 00:33:30 +01:00
85b5c181a0 bintree added 2025-11-21 00:33:08 +01:00
b0826ec057 stack completed 2025-11-21 00:32:57 +01:00
12742b46fe small fix numbersTest 2025-11-21 00:32:30 +01:00
cd13bbea4e bintreeTest file added 2025-11-21 00:32:10 +01:00
0c075ea18c stackTest file added 2025-11-21 00:31:48 +01:00
7 changed files with 356 additions and 9 deletions

View File

@ -8,11 +8,51 @@
* `treeSize`: zählt die Knoten im Baum (rekursiv),
* `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */
static StackNode *iteratorStack = NULL;
// Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate)
{
if (root == NULL)
{
// Neue Node anlegen
TreeNode *newNode = malloc(sizeof(TreeNode));
if (!newNode) return NULL;
newNode->data = malloc(dataSize);
if(!newNode->data)
{
free(newNode);
return NULL;
}
memcpy(newNode->data, data, dataSize);
newNode->left = NULL;
newNode->right = NULL;
if (isDuplicate)
*isDuplicate = 0;
return newNode;
}
int cmp = compareFct(data, root->data);
if (cmp == 0)
{
if (isDuplicate)
*isDuplicate = 1;
return root; // Einfügen verhindern
}
if (cmp < 0)
root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate);
else
root->right = addToTree(root->right, data, dataSize, compareFct, isDuplicate);
return root;
}
// Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction.
@ -20,17 +60,58 @@ TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFc
// push the top node and push all its left nodes.
void *nextTreeData(TreeNode *root)
{
// Neues Traversieren?
if (root != NULL)
{
clearStack(iteratorStack);
iteratorStack = NULL;
// Root + alle linken Nachfolger pushen
TreeNode *current = root;
while (current != NULL)
{
iteratorStack = push(iteratorStack, current);
current = current->left;
}
}
// Wenn Stack leer → fertig
if (iteratorStack == NULL)
return NULL;
// Top-Node holen
TreeNode *node = (TreeNode *)top(iteratorStack);
iteratorStack = pop(iteratorStack);
// rechten Teilbaum + linke Kette pushen
TreeNode *right = node->right;
while (right != NULL)
{
iteratorStack = push(iteratorStack, right);
right = right->left;
}
return node->data;
}
// Releases all memory resources (including data copies).
void clearTree(TreeNode *root)
{
if (root != NULL)
{
clearTree(root->left);
clearTree(root->right);
free(root->data);
free(root);
}
}
// Returns the number of entries in the tree given by root.
unsigned int treeSize(const TreeNode *root)
{
if (root == NULL)
return 0;
return 1 + treeSize(root->left) + treeSize(root->right);
}

119
I2_Dobble/bintreeTest.c Normal file
View File

@ -0,0 +1,119 @@
#include "unity.h"
#include "bintree.h"
#include <stdlib.h>
static int compare(const void *a, const void *b)
{
return (*(int *)a > *(int *)b) - (*(int *)a < *(int *)b);
}
void setUp(void) { }
void tearDown(void) { }
void test_addToTree_single_element(void)
{
TreeNode *root = NULL;
int value = 10;
int dup = -1;
root = addToTree(root, &value, sizeof(int), compare, &dup);
TEST_ASSERT_NOT_NULL(root);
TEST_ASSERT_EQUAL_INT(10, *(int*)root->data);
TEST_ASSERT_EQUAL_INT(0, dup); // neuer Eintrag
clearTree(root);
}
void test_addToTree_multiple_elements_and_size(void)
{
TreeNode *root = NULL;
int values[] = {5, 3, 7, 1, 4};
int dup = -1;
for (int i = 0; i < 5; i++)
root = addToTree(root, &values[i], sizeof(int), compare, &dup);
TEST_ASSERT_EQUAL_UINT(5, treeSize(root));
clearTree(root);
}
void test_addToTree_duplicate_detection(void)
{
TreeNode *root = NULL;
int val = 42;
int dup;
root = addToTree(root, &val, sizeof(int), compare, &dup);
TEST_ASSERT_EQUAL(0, dup);
addToTree(root, &val, sizeof(int), compare, &dup);
TEST_ASSERT_EQUAL(1, dup);
clearTree(root);
}
void test_treeSize_empty_tree_detection(void)
{
TEST_ASSERT_EQUAL_UINT(0, treeSize(NULL));
}
void test_nextTreeData_returns_inorder(void)
{
TreeNode *root = NULL;
int values[] = {5, 3, 7, 2, 4, 6, 8};
// Einfügen
for (int i = 0; i < 7; i++)
root = addToTree(root, &values[i], sizeof(int), compare, NULL);
/* Erwartete Reihenfolge (inorder): 2,3,4,5,6,7,8 */
int expected[] = {2,3,4,5,6,7,8};
int idx = 0;
void *p = nextTreeData(root); // Iterator starten
while (p != NULL)
{
TEST_ASSERT_EQUAL_INT(expected[idx], *(int*)p);
idx++;
p = nextTreeData(NULL); // Fortsetzen mit NULL
}
TEST_ASSERT_EQUAL(7, idx); //alle Einträge geprüft
clearTree(root);
}
void test_treeSize_returns_correct_size()
{
TreeNode *root = NULL;
int values[] = {8, 3, 10, 1, 6, 14};
// ersten Baum aufbauen
for (int i = 0; i < 6; i++)
root = addToTree(root, &values[i], sizeof(int), compare, NULL);
TEST_ASSERT_EQUAL_UINT(6, treeSize(root));
// Baum löschen
clearTree(root);
root = NULL;
TEST_ASSERT_EQUAL_UINT(0, treeSize(root));
}
int main(void)
{
UNITY_BEGIN();
RUN_TEST(test_addToTree_single_element);
RUN_TEST(test_addToTree_multiple_elements_and_size);
RUN_TEST(test_addToTree_duplicate_detection);
RUN_TEST(test_treeSize_empty_tree_detection);
RUN_TEST(test_nextTreeData_returns_inorder);
RUN_TEST(test_treeSize_returns_correct_size);
return UNITY_END();
}

View File

@ -28,29 +28,38 @@ doble_initial:
program_obj_files = stack.o bintree.o numbers.o timer.o highscore.o
doble : main.o $(program_obj_files)
$(CC) $(FLAGS) $(LDFLAGS) $^ -o doble
$(CC) $(CFLAGS) $(LDFLAGS) $^ -o doble
$(program_obj_filesobj_files): %.o: %.c
$(CC) -c $(FLAGS) $^ -o $@
$(program_obj_files): %.o: %.c
$(CC) -c $(CFLAGS) $^ -o $@
# --------------------------
# Unit Tests
# --------------------------
unitTests: numbersTest
unity_src = $(unityfolder)/unity.c
unitTests: numbersTest stackTest bintreeTest
./runNumbersTest
./runStackTest
./runBintreeTest
numbersTest: numbers.o bintree.o numbersTest.o $($(unityfolder)/unity.c)
$(CC) $(FLAGS) $(LDFLAGS) $^ -o $@
numbersTest: numbers.o bintree.o stack.o numbersTest.c $(unity_src) stack.o
$(CC) $(CFLAGS) $(LDFLAGS) -I$(unityfolder) $^ -o runNumbersTest
stackTest: stack.o stackTest.c $(unity_src)
$(CC) $(CFLAGS) $(LDFLAGS) -I$(unityfolder) $^ -o runStackTest
bintreeTest: bintree.o bintreeTest.c $(unity_src) stack.o
$(CC) $(CFLAGS) $(LDFLAGS) -I$(unityfolder) $^ -o runBintreeTest
%.o: %.c
$(CC) -c $(FLAGS) $< -o $@
$(CC) -c $(CFLAGS) $< -o $@
# --------------------------
# Clean
# --------------------------
clean:
ifeq ($(OS),Windows_NT)
del /f *.o doble runNumbersTest doble_initial
del /f *.o doble doble_initial runNumbersTest runStackTest runBintreeTest
else
rm -f *.o doble runNumbersTest doble_initial
rm -f *.o doble doble_initial runNumbersTest runStackTest runBintreeTest
endif

View File

@ -1,3 +1,4 @@
#include <stdlib.h>
#include "numbers.h"
#include "unity.h"
#include "unity_internals.h"
@ -75,6 +76,9 @@ void test_complete_function_of_numbers(void)
free(arr);
}
void setUp(void) { }
void tearDown(void) { }
int main(void)
{
UNITY_BEGIN();

View File

@ -10,24 +10,47 @@
// Pushes data as pointer onto the stack.
StackNode *push(StackNode *stack, void *data)
{
StackNode *newNode = malloc(sizeof(StackNode));
if (!newNode)
return stack;
newNode->data = data;
newNode->next = stack;
return newNode;
}
// Deletes the top element of the stack (latest added element) and releases its memory. (Pointer to data has to be
// freed by caller.)
StackNode *pop(StackNode *stack)
{
if(stack == NULL)
return NULL;
StackNode *newTopElement = stack->next;
free(stack);
return newTopElement;
}
// Returns the data of the top element.
void *top(StackNode *stack)
{
if (!stack)
return NULL;
return stack->data;
}
// Clears stack and releases all memory.
void clearStack(StackNode *stack)
{
StackNode *current = stack;
while (current)
{
StackNode *next = current->next;
free(current);
current = next;
}
}

View File

@ -8,6 +8,11 @@ The latest element is taken from the stack. */
#include <stdlib.h>
//TODO: passenden Datentyp als struct anlegen
typedef struct stack
{
void *data;
struct stack *next;
} StackNode;
// Pushes data as pointer onto the stack.
StackNode *push(StackNode *stack, void *data);

106
I2_Dobble/stackTest.c Normal file
View File

@ -0,0 +1,106 @@
#include "stack.h"
#include "unity.h"
#include "unity_internals.h"
void setUp(void) { }
void tearDown(void) { }
void test_push_should_add_new_node_at_top(void)
{
StackNode *stack = NULL;
int value = 42;
stack = push(stack, &value);
TEST_ASSERT_NOT_NULL(stack);
TEST_ASSERT_EQUAL_PTR(&value, stack->data);
TEST_ASSERT_NULL(stack->next);
clearStack(stack);
}
void test_push_multiple_should_chain_nodes_correctly(void)
{
int a = 1, b = 2;
StackNode *first = push(NULL, &a);
StackNode *second = push(first, &b);
TEST_ASSERT_EQUAL_PTR(&b, second->data);
TEST_ASSERT_EQUAL_PTR(first, second->next);
TEST_ASSERT_EQUAL_PTR(&a, first->data);
clearStack(second);
}
void test_top_should_return_null_on_empty_stack(void)
{
StackNode *stack = NULL;
TEST_ASSERT_NULL(top(stack));
}
void test_top_should_return_data_of_existing_node(void)
{
StackNode node;
int x = 99;
node.data = &x;
node.next = NULL;
TEST_ASSERT_EQUAL_PTR(&x, top(&node));
}
void test_pop_should_return_null_when_stack_empty(void)
{
StackNode *stack = NULL;
TEST_ASSERT_NULL(pop(stack));
}
void test_pop_should_remove_single_element(void)
{
StackNode *stack = malloc(sizeof(StackNode));
int x = 7;
stack->data = &x;
stack->next = NULL;
StackNode *result = pop(stack);
TEST_ASSERT_NULL(result); // Kein Element mehr übrig
}
void test_pop_should_remove_top_node_only(void)
{
// Manuell verkettete Liste aufbauen
StackNode *n1 = malloc(sizeof(StackNode));
StackNode *n2 = malloc(sizeof(StackNode));
int a = 1, b = 2;
n1->data = &a;
n1->next = NULL;
n2->data = &b;
n2->next = n1;
StackNode *result = pop(n2);
TEST_ASSERT_EQUAL_PTR(n1, result);
clearStack(result);
}
int main()
{
UNITY_BEGIN();
RUN_TEST(test_push_should_add_new_node_at_top);
RUN_TEST(test_push_multiple_should_chain_nodes_correctly);
RUN_TEST(test_top_should_return_null_on_empty_stack);
RUN_TEST(test_top_should_return_data_of_existing_node);
RUN_TEST(test_pop_should_return_null_when_stack_empty);
RUN_TEST(test_pop_should_remove_single_element);
RUN_TEST(test_pop_should_remove_top_node_only);
return UNITY_END();
}