diff --git a/neuralNetworkTests.c b/neuralNetworkTests.c index 9be45e2..6a5004e 100644 --- a/neuralNetworkTests.c +++ b/neuralNetworkTests.c @@ -4,44 +4,43 @@ #include #include "unity.h" #include "neuralNetwork.h" -//Dateischichten sind in neuralNetwork.h definiert -// Dateiname: __info2_neural_network_file_format__ + +//Testdatei schreiben static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) { - FILE *file = fopen(path, "wb"); - if (!file) return; +// Datei öffnen +FILE *file = fopen(path, "wb"); +if (file == NULL) +return; - // Header schreiben - fwrite(FILE_HEADER_STRING, 1, strlen(FILE_HEADER_STRING), file); +// Header schreiben +const char *fileTag = "__info2_neural_network_file_format__"; +fwrite(fileTag, 1, strlen(fileTag), file); - // Anzahl Layer schreiben - uint32_t nLayers = nn.numberOfLayers; - fwrite(&nLayers, sizeof(uint32_t), 1, file); +// input Dimension schreiben +int inputDim = nn.layers[0].weights.cols; +fwrite(&inputDim, sizeof(int), 1, file); - for (uint32_t i = 0; i < nLayers; i++) { - Layer layer = nn.layers[i]; +// für weiter Layer nur output Dimension schreiben +for (unsigned int i = 0; i < nn.numberOfLayers; i++) +{ + int outputDim = nn.layers[i].weights.rows; + fwrite(&outputDim, sizeof(int), 1, file); - // Weights-Dimensionen - uint32_t rW = layer.weights.rows; - uint32_t cW = layer.weights.cols; - fwrite(&rW, sizeof(uint32_t), 1, file); - fwrite(&cW, sizeof(uint32_t), 1, file); + int weightCount = nn.layers[i].weights.rows * nn.layers[i].weights.cols; + fwrite(nn.layers[i].weights.buffer, sizeof(MatrixType), weightCount, file); - // Weights-Werte - fwrite(layer.weights.buffer, sizeof(MatrixType), rW * cW, file); + int biasesCount = nn.layers[i].biases.rows * nn.layers[i].biases.cols; + fwrite(nn.layers[i].biases.buffer, sizeof(MatrixType), biasesCount, file); +} - // Bias-Dimensionen - uint32_t rB = layer.biases.rows; - uint32_t cB = layer.biases.cols; - fwrite(&rB, sizeof(uint32_t), 1, file); - fwrite(&cB, sizeof(uint32_t), 1, file); +// Ende: loadModel liest 0 ein +int fileEnd = 0; +fwrite(&fileEnd, sizeof(int), 1, file); - // Bias-Werte - fwrite(layer.biases.buffer, sizeof(MatrixType), rB * cB, file); - } - - fclose(file); +// Datei schließen +fclose(file); }