Anpassungen an Testdatei

This commit is contained in:
Rebekka Haemmerl 2025-11-25 19:25:27 +01:00
parent 58f9fd8115
commit cfe4720273
2 changed files with 225 additions and 33 deletions

View File

@ -6,17 +6,209 @@
#define BUFFER_SIZE 100
#define FILE_HEADER_STRING "__info2_image_file_format__"
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
/*
* Diese Hilfsfunktionen kümmern sich um:
* - Das Öffnen der Datei und Überprüfen des Dateinamens
* - Das Überprüfen des Headers, um sicherzustellen, dass es sich um die richtige Datei handelt
* - Das Einlesen der Metadaten (Anzahl der Bilder, Bildbreite und -höhe)
* -> Die Hilfsfunktionen garantieren, dass die Datei gültig ist, bevor mit dem Einlesen der Bilddaten fortgefahren wird.
*/
static FILE *openImageFile(const char *path) // Checks if the given filename pointer is valid (not NULL).
{
if (path == NULL)
{
return NULL;
}
return fopen(path, "rb"); //opening document in binear
}
static int readAndCheckHeader(FILE *file) // gets the length of the header text
{
size_t headerLength = strlen(FILE_HEADER_STRING);
char buffer[BUFFER_SIZE];
if (headerLength + 1 > BUFFER_SIZE) //checks if buffer is big enough for header size
{
return 0;
}
if (fread(buffer, 1, headerLength, file) != headerLength) // Checks if reading the expected number of header bytes from the file succeeded
{
return 0;
}
buffer[headerLength] = '\0'; // add string terminator so the header becomes a valid C-string
if (strcmp(buffer, FILE_HEADER_STRING) != 0) // checks if the expected header matches the header read from the file
{
return 0;
}
return 1; /* Header ok */
}
static int readImageMetaData(FILE *file, // reads the metadata (count, width, height) from the file and stores them in the provided pointers
unsigned short *count,
unsigned short *width,
unsigned short *height)
{
if (fread(count, sizeof(unsigned short), 1, file) != 1) // read the number of images from the file
{
return 0;
}
if (fread(width, sizeof(unsigned short), 1, file) != 1) // reads the image width
{
return 0;
}
if (fread(height, sizeof(unsigned short), 1, file) != 1) //reads the image height
{
return 0;
}
if (*count == 0 || *width == 0 || *height == 0) // check for invalid metadata (count, width or height cannot be zero)
{
return 0;
}
return 1;
}
/*
Hauptfunktion
*/
GrayScaleImageSeries *readImages(const char *path)
{
GrayScaleImageSeries *series = NULL;
// 1. Open the file
FILE *file = openImageFile(path);
if (file == NULL)
{
return NULL;
}
// 2. Check the header
if (!readAndCheckHeader(file))
{
fclose(file);
return NULL;
}
// 3. Read image metadata
unsigned short count = 0;
unsigned short width = 0;
unsigned short height = 0;
if (!readImageMetaData(file, &count, &width, &height))
{
fclose(file);
return NULL;
}
// 4. Allocate memory for image series
GrayScaleImageSeries *series = (GrayScaleImageSeries *)malloc(sizeof(GrayScaleImageSeries)); // Allocate memory for the image series, images, and labels. Return NULL if allocation fails.
if (series == NULL)
{
fclose(file);
return NULL;
}
series->count = count;
series->images = (GrayScaleImage *)calloc(count, sizeof(GrayScaleImage));
series->labels = (unsigned char *)malloc(count * sizeof(unsigned char));
if (series->images == NULL || series->labels == NULL)
{
free(series->images);
free(series->labels);
free(series);
fclose(file);
return NULL;
}
// 5. Read the images and labels
for (unsigned int i = 0; i < count; i++)
{
GrayScaleImage *image = &series->images[i];
image->width = (unsigned int)width;
image->height = (unsigned int)height;
size_t numPixels = (size_t)width * (size_t)height;
image->buffer = (GrayScalePixelType *)malloc(numPixels * sizeof(GrayScalePixelType));
if (image->buffer == NULL)
{
for (unsigned int j = 0; j < i; j++)
{
free(series->images[j].buffer);
}
free(series->images);
free(series->labels);
free(series);
fclose(file);
return NULL;
}
if (fread(image->buffer, sizeof(GrayScalePixelType), numPixels, file) != numPixels) // Check if the correct number of pixel values (width * height) were read for the image
{
for (unsigned int j = 0; j <= i; j++)
{
free(series->images[j].buffer);
}
free(series->images);
free(series->labels);
free(series);
fclose(file);
return NULL;
}
if (fread(&series->labels[i], sizeof(unsigned char), 1, file) != 1) // Check if the label for the image was successfully read (1 byte)
{
for (unsigned int j = 0; j <= i; j++)
{
free(series->images[j].buffer);
}
free(series->images);
free(series->labels);
free(series);
fclose(file);
return NULL;
}
}
fclose(file);
return series;
}
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
void clearSeries(GrayScaleImageSeries *series)
{
}
if (series == NULL)
{
return;
}
if (series->images != NULL)
{
for (unsigned int i = 0; i < series->count; i++)
{
free(series->images[i].buffer);
series->images[i].buffer = NULL;
}
free(series->images);
series->images = NULL;
}
if (series->labels != NULL)
{
free(series->labels);
series->labels = NULL;
}
free(series);
}

View File

@ -4,44 +4,44 @@
#include <math.h>
#include "unity.h"
#include "neuralNetwork.h"
//Dateischichten sind in neuralNetwork.h definiert
// Dateiname: __info2_neural_network_file_format__
#define FILE_HEADER_STRING "__info2_neural_network_file_format__"
//Testdatei schreiben
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{
FILE *file = fopen(path, "wb");
if (!file) return;
// Datei öffnen
FILE *file = fopen(path, "wb");
if (file == NULL)
return;
// Header schreiben
fwrite(FILE_HEADER_STRING, 1, strlen(FILE_HEADER_STRING), file);
// Header inklusive Nullterminator schreiben
fwrite(FILE_HEADER_STRING, sizeof(char), strlen(FILE_HEADER_STRING), file);
// Anzahl Layer schreiben
uint32_t nLayers = nn.numberOfLayers;
fwrite(&nLayers, sizeof(uint32_t), 1, file);
for (unsigned int i = 0; i < nn.numberOfLayers; i++)
{
const Layer *layer = &nn.layers[i];
for (uint32_t i = 0; i < nLayers; i++) {
Layer layer = nn.layers[i];
int inputDim = layer->weights.cols; // Spalten
int outputDim = layer->weights.rows; // Zeilen
// Weights-Dimensionen
uint32_t rW = layer.weights.rows;
uint32_t cW = layer.weights.cols;
fwrite(&rW, sizeof(uint32_t), 1, file);
fwrite(&cW, sizeof(uint32_t), 1, file);
// Dimensionen schreiben
fwrite(&inputDim, sizeof(int), 1, file);
fwrite(&outputDim, sizeof(int), 1, file);
// Weights-Werte
fwrite(layer.weights.buffer, sizeof(MatrixType), rW * cW, file);
// Gewichtswerte schreiben
fwrite(layer->weights.buffer, sizeof(MatrixType), layer->weights.rows * layer->weights.cols, file);
// Bias-Dimensionen
uint32_t rB = layer.biases.rows;
uint32_t cB = layer.biases.cols;
fwrite(&rB, sizeof(uint32_t), 1, file);
fwrite(&cB, sizeof(uint32_t), 1, file);
// Biaswerte schreiben
fwrite(layer->biases.buffer, sizeof(MatrixType), layer->biases.rows * layer->biases.cols, file);
}
int zero = 0;
fwrite(&zero, sizeof(int), 1, file);
// Bias-Werte
fwrite(layer.biases.buffer, sizeof(MatrixType), rB * cB, file);
}
fclose(file);
// Datei schließen
fclose(file);
}