Projektarbeit Datalogger
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Teensy4.1_Datalogger new.ino 10KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373
  1. // Visual Micro is in vMicro>General>Tutorial Mode
  2. //
  3. /*
  4. Name: Teensy4.1_Datalogger new.ino
  5. Created: 31.08.2022 18:39:32
  6. Author: GAMINGMASHEEN\Julian Graf
  7. */
  8. #include <SdFat.h>
  9. #include <TimeLib.h>
  10. #include <Bounce.h>
  11. #define SD_FAT_TYPE 3
  12. #ifndef SDCARD_SS_PIN
  13. const uint8_t SD_CS_PIN = SS;
  14. #else // SDCARD_SS_PIN
  15. // Assume built-in SD is used.
  16. const uint8_t SD_CS_PIN = SDCARD_SS_PIN;
  17. #endif // SDCARD_SS_PIN
  18. #if HAS_SDIO_CLASS
  19. #define SD_CONFIG SdioConfig(FIFO_SDIO)
  20. #elif ENABLE_DEDICATED_SPI
  21. #define SD_CONFIG SdSpiConfig(SD_CS_PIN, DEDICATED_SPI)
  22. #else // HAS_SDIO_CLASS
  23. #define SD_CONFIG SdSpiConfig(SD_CS_PIN, SHARED_SPI)
  24. #endif // HAS_SDIO_CLASS
  25. #if SD_FAT_TYPE == 0
  26. SdFat sd;
  27. File file;
  28. #elif SD_FAT_TYPE == 1
  29. SdFat32 sd;
  30. File32 file;
  31. #elif SD_FAT_TYPE == 2
  32. SdExFat sd;
  33. ExFile file;
  34. #elif SD_FAT_TYPE == 3
  35. SdFs sd;
  36. FsFile file;
  37. #else // SD_FAT_TYPE
  38. #error Invalid SD_FAT_TYPE
  39. #endif // SD_FAT_TYPE
  40. // Define User Types below here or use a .h file
  41. //
  42. const char software_name[] = "Software: Teensy_datalog V.2";
  43. const int min_voltage_batterie = 13;
  44. const int fixed_resistor_temperatur = 500;
  45. const int power_Temp_sensor = 34, power_Windfahne = 36, LED_Fail = 24, R_Temp_fix = 500,
  46. LED_Write = 5, LED_Normal = 6, LED_Batterie = 7, Grenz_U_Batterie = 13,
  47. taster_manuell_speichern = 28, Windfahne = 20, T_sensor_input = 17, Batterie_input = 38;
  48. int last_second, last_minute, last_hour, seconds_for_blink;
  49. struct calculations {
  50. private:
  51. float summ;
  52. float square_summ;
  53. float cubic_summ;
  54. public:
  55. void calculate(float speed_per_second[60], int amount_saved) {
  56. summ = 0;
  57. square_summ = 0;
  58. cubic_summ = 0;
  59. for (int i = 0; i < amount_saved; i++) {
  60. summ = summ + speed_per_second[i];
  61. square_summ = square_summ + pow(speed_per_second[i], 2);
  62. cubic_summ = cubic_summ + pow(speed_per_second[i], 3);
  63. }
  64. arithmetic_mean = summ / float(amount_saved);
  65. square_mean = pow((square_summ / float(amount_saved)), (1 / 2.0));
  66. cubic_mean = pow((cubic_mean / float(amount_saved)), (1 / 3.0));
  67. summ = 0;
  68. square_summ = 0;
  69. cubic_summ = 0;
  70. for (int i = 0; i < amount_saved; i++) {
  71. summ = summ + pow((speed_per_second[i] - arithmetic_mean), 2);
  72. square_summ = square_summ + pow((speed_per_second[i] - square_mean), 2);
  73. cubic_summ = cubic_summ + pow((speed_per_second[i] - cubic_mean), 2);
  74. speed_min = min(speed_min, speed_per_second[i]);
  75. speed_max = max(speed_max, speed_per_second[i]);
  76. }
  77. arithmetic_deviation = pow((summ / float(amount_saved - 1)), (1 / 2.0));
  78. square_deviation = pow((square_summ / float(amount_saved - 1)), (1 / 2.0));
  79. cubic_deviation = pow((cubic_summ / float(amount_saved - 1)), (1 / 2.0));
  80. seconds_skipped = 60 - amount_saved;
  81. }
  82. float arithmetic_mean;
  83. float arithmetic_deviation;
  84. float square_mean;
  85. float square_deviation;
  86. float cubic_mean;
  87. float cubic_deviation;
  88. float speed_min;
  89. float speed_max;
  90. int seconds_skipped;
  91. };
  92. struct anemomenter {
  93. public:
  94. anemometer(){
  95. }
  96. void setup_anemometer(int pin) {
  97. this->reed_contact = Bounce(pin, 10);
  98. }
  99. void meassure() {
  100. if (reed_contact.update() && reed_contact.fallingEdge()) {
  101. count_per_second++;
  102. }
  103. }
  104. void save_wind_speed() {
  105. wind_speed_per_second[saved_seconds] = 0.4 * count_per_second;
  106. saved_seconds++;
  107. }
  108. void calculate() {
  109. values[saved_minutes].calculate(wind_speed_per_second, saved_seconds);
  110. saved_seconds = 0;
  111. saved_minutes++;
  112. }
  113. void file_print() {
  114. for (int i = 0; i < saved_minutes; i++) {
  115. file.printf("Min: %f,\tMax: %f,\t", values[i].speed_min, values[i].speed_max);
  116. file.printf("Arith. Mittel: % f,\tStandard Abw.: %f\t", values[i].arithmetic_mean, values[i].arithmetic_deviation);
  117. file.printf("Quadr. Mittel: % f,\tStandard Abw.: %f\t", values[i].square_mean, values[i].square_deviation);
  118. file.printf("Kub. Mittel: %f,\tStandard Abw.: %f\t", values[i].cubic_mean, values[i].cubic_deviation);
  119. file.printf("Übersprungene Sek.: %i\n", values[i].seconds_skipped);
  120. }
  121. file.printf("Übersprungene Min.: %i\n", 60 - saved_minutes);
  122. saved_minutes = 0;
  123. }
  124. private:
  125. int count_per_second = 0;
  126. int saved_seconds = 0;
  127. int saved_minutes = 0;
  128. float wind_speed_per_second[60];
  129. Bounce reed_contact;
  130. calculations values[60];
  131. }anemometer_1, anemometer_2, anemometer_3;
  132. struct temp_sensor {
  133. private:
  134. int U_Temp;
  135. int R_Temp;
  136. float Temp = 0;
  137. short int array_Temp_datenblatt[20] = { -30, -20, -10, 0, 10, 20, 25, 30, 40, 50,
  138. 391, 424, 460, 498, 538, 581, 603, 626, 672, 722};
  139. public:
  140. void measure() {
  141. digitalWrite(power_Temp_sensor, HIGH);
  142. U_Temp = analogRead(T_sensor_input);
  143. digitalWrite(power_Temp_sensor, LOW);
  144. R_Temp = R_Temp_fix / (1023 - U_Temp);
  145. for (int t = 0; t < 9; t++) {
  146. if ((R_Temp >= array_Temp_datenblatt[t + 10]) && (R_Temp <= array_Temp_datenblatt[t + 11])) {
  147. Temp = array_Temp_datenblatt[t] + ((R_Temp - array_Temp_datenblatt[t + 10]) * (array_Temp_datenblatt[t + 1] - array_Temp_datenblatt[t]) / (array_Temp_datenblatt[t + 11] - array_Temp_datenblatt[t + 10]));
  148. }
  149. }
  150. }
  151. void file_print() {
  152. printf("Temperatur: %.2f °C\n", Temp);
  153. }
  154. } temp_sensor_1;
  155. struct wind_vain {
  156. private:
  157. float wind_sec;
  158. float wind_summ = 0;
  159. float values[60];
  160. int saved_minutes = 0;
  161. int saved_seconds = 0;
  162. public:
  163. void measure() {
  164. digitalWrite(power_Windfahne, HIGH);
  165. wind_sec = map(analogRead(Windfahne), 0, 1023, 20, 350);
  166. digitalWrite(power_Windfahne, LOW);
  167. wind_summ += wind_sec;
  168. saved_seconds++;
  169. }
  170. void calculate() {
  171. values[saved_minutes] = wind_summ / saved_seconds;
  172. wind_summ = 0;
  173. saved_minutes++;
  174. saved_seconds = 0;
  175. }
  176. void file_print() {
  177. for (int i = 0; i < saved_minutes; i++) {
  178. printf("Windrichtung in ° Winkel: %.2f\n", values[i]);
  179. }
  180. saved_minutes = 0;
  181. }
  182. }wind_vain_1;
  183. void dateTime(uint16_t* date, uint16_t* time, uint8_t* ms10) {
  184. // Return date using FS_DATE macro to format fields.
  185. *date = FS_DATE(year(), month(), day());
  186. // Return time using FS_TIME macro to format fields.
  187. *time = FS_TIME(hour(), minute(), second());
  188. // Return low time bits in units of 10 ms.
  189. *ms10 = second() & 1 ? 100 : 0;
  190. }
  191. void write_sd() {
  192. digitalWrite(LED_Write, HIGH);
  193. char file_name[50];
  194. FsDateTime::setCallback(dateTime);
  195. sprintf(file_name, "Windmessmast-%d.%d.%d_%d:%d.txt", year(), month(), day(), hour(), minute());
  196. sd.begin(SD_CONFIG);
  197. if (file.open(file_name, FILE_WRITE)) {
  198. Serial.println("Start SD schreiben");
  199. file.println("Messdaten von Windmessmasst");
  200. file.println();
  201. file.println("Data logger : Teensy 4.1");
  202. file.println(software_name);
  203. file.println();
  204. file.println("Anemometer_1 Werte:");
  205. anemometer_1.file_print();
  206. file.println("Anemometer_2 Werte:");
  207. anemometer_2.file_print();
  208. file.println("Anemometer_3 Werte:");
  209. anemometer_3.file_print();
  210. file.println("Temperatursensor_1 Werte:");
  211. temp_sensor_1.file_print();
  212. file.println("Windfahne_1 Werte:");
  213. wind_vain_1.file_print();
  214. file.close();
  215. Serial.println("Ende des Schreibvorgangs");
  216. }
  217. digitalWrite(LED_Write, LOW);
  218. }
  219. void every_second() {
  220. anemometer_1.save_wind_speed();
  221. anemometer_2.save_wind_speed();
  222. anemometer_3.save_wind_speed();
  223. wind_vain_1.measure();
  224. if (digitalRead(taster_manuell_speichern) == HIGH){
  225. write_sd();
  226. }
  227. digitalWrite(LED_Normal, LOW);
  228. seconds_for_blink++;
  229. if (seconds_for_blink % 10 == 0) {
  230. digitalWrite(LED_Normal, HIGH);
  231. }
  232. last_second = second();
  233. }
  234. void every_minute() {
  235. anemometer_1.calculate();
  236. anemometer_2.calculate();
  237. anemometer_3.calculate();
  238. wind_vain_1.calculate();
  239. if((analogRead(Batterie_input) * 15.3 / float(1023)) < Grenz_U_Batterie) {
  240. digitalWrite(LED_Batterie, HIGH);
  241. }
  242. last_minute = minute();
  243. }
  244. void every_hour() {
  245. write_sd();
  246. last_hour = hour();
  247. }
  248. // The setup() function runs once each time the micro-controller starts
  249. void setup()
  250. {
  251. //set input and output
  252. pinMode(Windfahne, INPUT);
  253. pinMode(Batterie_input, INPUT);
  254. pinMode(T_sensor_input, INPUT);
  255. pinMode(taster_manuell_speichern, INPUT);
  256. pinMode(LED_Write, OUTPUT);
  257. pinMode(LED_Fail, OUTPUT);
  258. pinMode(LED_Normal, OUTPUT);
  259. pinMode(LED_Batterie, OUTPUT);
  260. pinMode(power_Temp_sensor, OUTPUT);
  261. pinMode(power_Windfahne, OUTPUT);
  262. setSyncProvider((getExternalTime)Teensy3Clock.get());
  263. Serial.begin(9600);
  264. Serial.println("Teensy 4.1-Datalogger gestartet");
  265. if (timeStatus() != timeSet) {
  266. Serial.println("Fehler bei Synchronisieren der Uhrzeit mit der RTC");
  267. digitalWrite(LED_Fail, HIGH);
  268. return;
  269. }
  270. Serial.println("Uhrzeit erfolgreich mit der RTC synchronisiert");
  271. if (!sd.begin(SD_CONFIG)) {
  272. digitalWrite(LED_Fail, HIGH);
  273. sd.initErrorHalt(&Serial);
  274. }
  275. anemometer_1.setup_anemometer(2);
  276. anemometer_2.setup_anemometer(9);
  277. anemometer_3.setup_anemometer(22);
  278. seconds_for_blink = 0;
  279. Serial.println("Messung startet");
  280. last_second = second();
  281. while (last_second == second()) {};
  282. last_second = second();
  283. last_minute = minute();
  284. last_hour = hour();
  285. }
  286. // Add the main program code into the continuous loop() function
  287. void loop()
  288. {
  289. anemometer_1.meassure();
  290. anemometer_2.meassure();
  291. anemometer_3.meassure();
  292. if (second() != last_second) {
  293. every_second();
  294. if (minute() != last_minute) {
  295. every_minute();
  296. if (hour() != last_hour) {
  297. every_hour();
  298. }
  299. }
  300. }
  301. }