#include #include "stack.h" #include "bintree.h" // TODO: binären Suchbaum implementieren /* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv), * `clearTree`: gibt den gesamten Baum frei (rekursiv), * `treeSize`: zählt die Knoten im Baum (rekursiv), * `nextTreeData`: Traversierung mit Hilfe des zuvor implementierten Stacks. */ // Adds a copy of data's pointer destination to the tree using compareFct for ordering. Accepts duplicates // if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added). TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate) { if (isDuplicate) *isDuplicate = 0; // Wenn kein Knoten angelegt if (root == NULL) { // Neuen Knoten erstellen TreeNode *newNode = malloc(sizeof(TreeNode)); if (!newNode) return NULL; // mit Daten füllen newNode->data = malloc(dataSize); if (!(newNode->data)) { free(newNode); return NULL; } memcpy(newNode->data, data, dataSize); newNode->left = NULL; // Kinder NULL setzen newNode->right = NULL; return newNode; } // auf Doppellungen überprüfen, daten/werte vergelichen // int cmp = compareFct(data, root->data); int cmp = compareFct(data, root->data); if (cmp == 0) // Duplikat erkannt { if (isDuplicate) // nicht einfügen { *isDuplicate = 1; return root; } else // einfügen erlaubt { root->right = addToTree(root->right, data, dataSize, compareFct, NULL); return root; } } // kein Duplikat if (cmp < 0) { root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate); } else if (cmp > 0) { root->right = addToTree(root->right, data, dataSize, compareFct, isDuplicate); } return root; } // Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction. // Use your implementation of a stack to organize the iterator. Push the root node and all left nodes first. On returning the next element, // push the top node and push all its left nodes. void *nextTreeData(TreeNode *root) { static StackNode *stack = NULL; // Stack für Iterator static TreeNode *lastRoot = NULL; TreeNode *currentNode; if (root != NULL) // Initialisierung bei erstem Aufruf { lastRoot = root; if (stack) { freeStack(stack); stack = NULL; } stack = createStack(); // alle linken Knoten vom Wurzelknoten pushen currentNode = root; while (currentNode) { push(stack, currentNode); currentNode = currentNode->left; } } // Stack ist leer, keine Daten mehr if (!stack || isEmpty(stack)) return NULL; TreeNode *newNode = pop(stack); // nächster Knoten // Wenn rechter Teilbaum vorhanden → alle linken Knoten pushen currentNode = newNode->right; while (currentNode) { push(stack, currentNode); currentNode = currentNode->left; } return newNode->data; // Daten zurückgeben } // Releases all memory resources (including data copies). void clearTree(TreeNode *root) { if (root) { clearTree(root->left); clearTree(root->right); free(root->data); free(root); } } // Returns the number of entries in the tree given by root. unsigned int treeSize(const TreeNode *root) { unsigned int size = 0; if (root == NULL) return 0; size = 1 + treeSize(root->left) + treeSize(root->right); return size; }