angepasst

This commit is contained in:
maxgrf 2025-11-24 12:09:28 +01:00
parent 54ca7acca2
commit 632bdeb9b9

View File

@ -5,10 +5,74 @@
#include "unity.h" #include "unity.h"
#include "neuralNetwork.h" #include "neuralNetwork.h"
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{ {
// TODO /*
typedef struct
{
Matrix weights;
Matrix biases;
ActivationFunctionType activation;
} Layer;
typedef struct
{
Layer *layers;
unsigned int numberOfLayers;
} NeuralNetwork;
*/
FILE *file = fopen(path, "wb");
if (!file)
return;
//---------------------------------------------------------------------------
const char *tag = "__info2_neural_network_file_format__";
fwrite(tag, 1, strlen(tag), file);
// Schreibe die Anzahl der Layer
if (nn.numberOfLayers == 0)
{
fclose(file);
return;
}
// Schreibe die Eingabe- und Ausgabegrößen des Netzwerks
int input = nn.layers[0].weights.cols;
int output = nn.layers[0].weights.rows;
fwrite(&input, sizeof(int), 1, file);
fwrite(&output, sizeof(int), 1, file);
// Schreibe die Layer-Daten
for (int i = 0; i < nn.numberOfLayers; i++)
{
const Layer *layer = &nn.layers[i];
int out = layer->weights.rows;
int in = layer->weights.cols;
fwrite(layer->weights.buffer, sizeof(MatrixType), out * in, file);
fwrite(layer->biases.buffer, sizeof(MatrixType), out * 1, file);
if (i + 1 < nn.numberOfLayers)
{
int nextOut = nn.layers[i + 1].weights.rows;
fwrite(&nextOut, sizeof(int), 1, file);
}
}
fclose(file);
// Debuging-Ausgabe
printf("prepareNeuralNetworkFile: Datei '%s' erstellt mit %u Layer(n)\n", path, nn.numberOfLayers);
for (unsigned int i = 0; i < nn.numberOfLayers; i++)
{
Layer layer = nn.layers[i];
printf("Layer %u: weights (%u x %u), biases (%u x %u)\n",
i, layer.weights.rows, layer.weights.cols, layer.biases.rows, layer.biases.cols);
}
//---------------------------------------------------------------------------
} }
void test_loadModelReturnsCorrectNumberOfLayers(void) void test_loadModelReturnsCorrectNumberOfLayers(void)
@ -16,15 +80,15 @@ void test_loadModelReturnsCorrectNumberOfLayers(void)
const char *path = "some__nn_test_file.info2"; const char *path = "some__nn_test_file.info2";
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6}; MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6}; MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2}; Matrix weights1 = {.buffer = buffer1, .rows = 3, .cols = 2};
Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3}; Matrix weights2 = {.buffer = buffer2, .rows = 2, .cols = 3};
MatrixType buffer3[] = {1, 2, 3}; MatrixType buffer3[] = {1, 2, 3};
MatrixType buffer4[] = {1, 2}; MatrixType buffer4[] = {1, 2};
Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1}; Matrix biases1 = {.buffer = buffer3, .rows = 3, .cols = 1};
Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1}; Matrix biases2 = {.buffer = buffer4, .rows = 2, .cols = 1};
Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}}; Layer layers[] = {{.weights = weights1, .biases = biases1}, {.weights = weights2, .biases = biases2}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2}; NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 2};
NeuralNetwork netUnderTest; NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet); prepareNeuralNetworkFile(path, expectedNet);
@ -40,12 +104,12 @@ void test_loadModelReturnsCorrectWeightDimensions(void)
{ {
const char *path = "some__nn_test_file.info2"; const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9}; MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights=weights, .biases=biases}}; Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest; NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet); prepareNeuralNetworkFile(path, expectedNet);
@ -63,12 +127,12 @@ void test_loadModelReturnsCorrectBiasDimensions(void)
{ {
const char *path = "some__nn_test_file.info2"; const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9}; MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights=weights, .biases=biases}}; Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest; NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet); prepareNeuralNetworkFile(path, expectedNet);
@ -86,12 +150,12 @@ void test_loadModelReturnsCorrectWeights(void)
{ {
const char *path = "some__nn_test_file.info2"; const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9}; MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights=weights, .biases=biases}}; Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest; NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet); prepareNeuralNetworkFile(path, expectedNet);
@ -111,12 +175,12 @@ void test_loadModelReturnsCorrectBiases(void)
{ {
const char *path = "some__nn_test_file.info2"; const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9}; MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights=weights, .biases=biases}}; Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest; NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet); prepareNeuralNetworkFile(path, expectedNet);
@ -138,7 +202,7 @@ void test_loadModelFailsOnWrongFileTag(void)
NeuralNetwork netUnderTest; NeuralNetwork netUnderTest;
FILE *file = fopen(path, "wb"); FILE *file = fopen(path, "wb");
if(file != NULL) if (file != NULL)
{ {
const char *fileTag = "info2_neural_network_file_format"; const char *fileTag = "info2_neural_network_file_format";
@ -159,12 +223,12 @@ void test_clearModelSetsMembersToNull(void)
{ {
const char *path = "some__nn_test_file.info2"; const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9}; MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights=weights, .biases=biases}}; Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest; NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet); prepareNeuralNetworkFile(path, expectedNet);
@ -181,7 +245,7 @@ void test_clearModelSetsMembersToNull(void)
static void someActivation(Matrix *matrix) static void someActivation(Matrix *matrix)
{ {
for(int i = 0; i < matrix->rows * matrix->cols; i++) for (int i = 0; i < matrix->rows * matrix->cols; i++)
{ {
matrix->buffer[i] = fabs(matrix->buffer[i]); matrix->buffer[i] = fabs(matrix->buffer[i]);
} }
@ -192,23 +256,23 @@ void test_predictReturnsCorrectLabels(void)
const unsigned char expectedLabels[] = {4, 2}; const unsigned char expectedLabels[] = {4, 2};
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17}; GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128}; GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}}; GrayScaleImage inputImages[] = {{.buffer = imageBuffer1, .width = 2, .height = 2}, {.buffer = imageBuffer2, .width = 2, .height = 2}};
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8}; MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14}; MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29}; MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4}; Matrix weights1 = {.buffer = weightsBuffer1, .rows = 2, .cols = 4};
Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2}; Matrix weights2 = {.buffer = weightsBuffer2, .rows = 3, .cols = 2};
Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3}; Matrix weights3 = {.buffer = weightsBuffer3, .rows = 5, .cols = 3};
MatrixType biasBuffer1[] = {200, 0}; MatrixType biasBuffer1[] = {200, 0};
MatrixType biasBuffer2[] = {0, -100, 0}; MatrixType biasBuffer2[] = {0, -100, 0};
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0}; MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1}; Matrix biases1 = {.buffer = biasBuffer1, .rows = 2, .cols = 1};
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1}; Matrix biases2 = {.buffer = biasBuffer2, .rows = 3, .cols = 1};
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1}; Matrix biases3 = {.buffer = biasBuffer3, .rows = 5, .cols = 1};
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \ Layer layers[] = {{.weights = weights1, .biases = biases1, .activation = someActivation},
{.weights=weights2, .biases=biases2, .activation=someActivation}, \ {.weights = weights2, .biases = biases2, .activation = someActivation},
{.weights=weights3, .biases=biases3, .activation=someActivation}}; {.weights = weights3, .biases = biases3, .activation = someActivation}};
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3}; NeuralNetwork netUnderTest = {.layers = layers, .numberOfLayers = 3};
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2); unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
TEST_ASSERT_NOT_NULL(predictedLabels); TEST_ASSERT_NOT_NULL(predictedLabels);
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0])); int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
@ -216,11 +280,13 @@ void test_predictReturnsCorrectLabels(void)
free(predictedLabels); free(predictedLabels);
} }
void setUp(void) { void setUp(void)
{
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden // Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
} }
void tearDown(void) { void tearDown(void)
{
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden // Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
} }