angepasst
This commit is contained in:
parent
54ca7acca2
commit
632bdeb9b9
@ -5,10 +5,74 @@
|
|||||||
#include "unity.h"
|
#include "unity.h"
|
||||||
#include "neuralNetwork.h"
|
#include "neuralNetwork.h"
|
||||||
|
|
||||||
|
|
||||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||||
{
|
{
|
||||||
// TODO
|
/*
|
||||||
|
typedef struct
|
||||||
|
{
|
||||||
|
Matrix weights;
|
||||||
|
Matrix biases;
|
||||||
|
ActivationFunctionType activation;
|
||||||
|
} Layer;
|
||||||
|
|
||||||
|
typedef struct
|
||||||
|
{
|
||||||
|
Layer *layers;
|
||||||
|
unsigned int numberOfLayers;
|
||||||
|
} NeuralNetwork;
|
||||||
|
|
||||||
|
*/
|
||||||
|
FILE *file = fopen(path, "wb");
|
||||||
|
if (!file)
|
||||||
|
return;
|
||||||
|
|
||||||
|
//---------------------------------------------------------------------------
|
||||||
|
const char *tag = "__info2_neural_network_file_format__";
|
||||||
|
fwrite(tag, 1, strlen(tag), file);
|
||||||
|
|
||||||
|
// Schreibe die Anzahl der Layer
|
||||||
|
if (nn.numberOfLayers == 0)
|
||||||
|
{
|
||||||
|
fclose(file);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Schreibe die Eingabe- und Ausgabegrößen des Netzwerks
|
||||||
|
int input = nn.layers[0].weights.cols;
|
||||||
|
int output = nn.layers[0].weights.rows;
|
||||||
|
|
||||||
|
fwrite(&input, sizeof(int), 1, file);
|
||||||
|
fwrite(&output, sizeof(int), 1, file);
|
||||||
|
|
||||||
|
// Schreibe die Layer-Daten
|
||||||
|
for (int i = 0; i < nn.numberOfLayers; i++)
|
||||||
|
{
|
||||||
|
const Layer *layer = &nn.layers[i];
|
||||||
|
int out = layer->weights.rows;
|
||||||
|
int in = layer->weights.cols;
|
||||||
|
|
||||||
|
fwrite(layer->weights.buffer, sizeof(MatrixType), out * in, file);
|
||||||
|
|
||||||
|
fwrite(layer->biases.buffer, sizeof(MatrixType), out * 1, file);
|
||||||
|
|
||||||
|
if (i + 1 < nn.numberOfLayers)
|
||||||
|
{
|
||||||
|
int nextOut = nn.layers[i + 1].weights.rows;
|
||||||
|
fwrite(&nextOut, sizeof(int), 1, file);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fclose(file);
|
||||||
|
|
||||||
|
// Debuging-Ausgabe
|
||||||
|
printf("prepareNeuralNetworkFile: Datei '%s' erstellt mit %u Layer(n)\n", path, nn.numberOfLayers);
|
||||||
|
for (unsigned int i = 0; i < nn.numberOfLayers; i++)
|
||||||
|
{
|
||||||
|
Layer layer = nn.layers[i];
|
||||||
|
printf("Layer %u: weights (%u x %u), biases (%u x %u)\n",
|
||||||
|
i, layer.weights.rows, layer.weights.cols, layer.biases.rows, layer.biases.cols);
|
||||||
|
}
|
||||||
|
//---------------------------------------------------------------------------
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||||
@ -16,15 +80,15 @@ void test_loadModelReturnsCorrectNumberOfLayers(void)
|
|||||||
const char *path = "some__nn_test_file.info2";
|
const char *path = "some__nn_test_file.info2";
|
||||||
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
|
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
|
||||||
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
|
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
|
||||||
Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2};
|
Matrix weights1 = {.buffer = buffer1, .rows = 3, .cols = 2};
|
||||||
Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3};
|
Matrix weights2 = {.buffer = buffer2, .rows = 2, .cols = 3};
|
||||||
MatrixType buffer3[] = {1, 2, 3};
|
MatrixType buffer3[] = {1, 2, 3};
|
||||||
MatrixType buffer4[] = {1, 2};
|
MatrixType buffer4[] = {1, 2};
|
||||||
Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1};
|
Matrix biases1 = {.buffer = buffer3, .rows = 3, .cols = 1};
|
||||||
Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1};
|
Matrix biases2 = {.buffer = buffer4, .rows = 2, .cols = 1};
|
||||||
Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}};
|
Layer layers[] = {{.weights = weights1, .biases = biases1}, {.weights = weights2, .biases = biases2}};
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2};
|
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 2};
|
||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
@ -40,12 +104,12 @@ void test_loadModelReturnsCorrectWeightDimensions(void)
|
|||||||
{
|
{
|
||||||
const char *path = "some__nn_test_file.info2";
|
const char *path = "some__nn_test_file.info2";
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
@ -63,12 +127,12 @@ void test_loadModelReturnsCorrectBiasDimensions(void)
|
|||||||
{
|
{
|
||||||
const char *path = "some__nn_test_file.info2";
|
const char *path = "some__nn_test_file.info2";
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
@ -86,12 +150,12 @@ void test_loadModelReturnsCorrectWeights(void)
|
|||||||
{
|
{
|
||||||
const char *path = "some__nn_test_file.info2";
|
const char *path = "some__nn_test_file.info2";
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
@ -111,12 +175,12 @@ void test_loadModelReturnsCorrectBiases(void)
|
|||||||
{
|
{
|
||||||
const char *path = "some__nn_test_file.info2";
|
const char *path = "some__nn_test_file.info2";
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
@ -138,7 +202,7 @@ void test_loadModelFailsOnWrongFileTag(void)
|
|||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
FILE *file = fopen(path, "wb");
|
FILE *file = fopen(path, "wb");
|
||||||
|
|
||||||
if(file != NULL)
|
if (file != NULL)
|
||||||
{
|
{
|
||||||
const char *fileTag = "info2_neural_network_file_format";
|
const char *fileTag = "info2_neural_network_file_format";
|
||||||
|
|
||||||
@ -159,12 +223,12 @@ void test_clearModelSetsMembersToNull(void)
|
|||||||
{
|
{
|
||||||
const char *path = "some__nn_test_file.info2";
|
const char *path = "some__nn_test_file.info2";
|
||||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||||
MatrixType biasBuffer[] = {7, 8, 9};
|
MatrixType biasBuffer[] = {7, 8, 9};
|
||||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||||
|
|
||||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||||
NeuralNetwork netUnderTest;
|
NeuralNetwork netUnderTest;
|
||||||
|
|
||||||
prepareNeuralNetworkFile(path, expectedNet);
|
prepareNeuralNetworkFile(path, expectedNet);
|
||||||
@ -181,7 +245,7 @@ void test_clearModelSetsMembersToNull(void)
|
|||||||
|
|
||||||
static void someActivation(Matrix *matrix)
|
static void someActivation(Matrix *matrix)
|
||||||
{
|
{
|
||||||
for(int i = 0; i < matrix->rows * matrix->cols; i++)
|
for (int i = 0; i < matrix->rows * matrix->cols; i++)
|
||||||
{
|
{
|
||||||
matrix->buffer[i] = fabs(matrix->buffer[i]);
|
matrix->buffer[i] = fabs(matrix->buffer[i]);
|
||||||
}
|
}
|
||||||
@ -192,23 +256,23 @@ void test_predictReturnsCorrectLabels(void)
|
|||||||
const unsigned char expectedLabels[] = {4, 2};
|
const unsigned char expectedLabels[] = {4, 2};
|
||||||
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
|
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
|
||||||
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
|
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
|
||||||
GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}};
|
GrayScaleImage inputImages[] = {{.buffer = imageBuffer1, .width = 2, .height = 2}, {.buffer = imageBuffer2, .width = 2, .height = 2}};
|
||||||
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
|
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
|
||||||
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
|
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
|
||||||
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
|
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
|
||||||
Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4};
|
Matrix weights1 = {.buffer = weightsBuffer1, .rows = 2, .cols = 4};
|
||||||
Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2};
|
Matrix weights2 = {.buffer = weightsBuffer2, .rows = 3, .cols = 2};
|
||||||
Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3};
|
Matrix weights3 = {.buffer = weightsBuffer3, .rows = 5, .cols = 3};
|
||||||
MatrixType biasBuffer1[] = {200, 0};
|
MatrixType biasBuffer1[] = {200, 0};
|
||||||
MatrixType biasBuffer2[] = {0, -100, 0};
|
MatrixType biasBuffer2[] = {0, -100, 0};
|
||||||
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
|
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
|
||||||
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
|
Matrix biases1 = {.buffer = biasBuffer1, .rows = 2, .cols = 1};
|
||||||
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
|
Matrix biases2 = {.buffer = biasBuffer2, .rows = 3, .cols = 1};
|
||||||
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
|
Matrix biases3 = {.buffer = biasBuffer3, .rows = 5, .cols = 1};
|
||||||
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
|
Layer layers[] = {{.weights = weights1, .biases = biases1, .activation = someActivation},
|
||||||
{.weights=weights2, .biases=biases2, .activation=someActivation}, \
|
{.weights = weights2, .biases = biases2, .activation = someActivation},
|
||||||
{.weights=weights3, .biases=biases3, .activation=someActivation}};
|
{.weights = weights3, .biases = biases3, .activation = someActivation}};
|
||||||
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
|
NeuralNetwork netUnderTest = {.layers = layers, .numberOfLayers = 3};
|
||||||
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
||||||
TEST_ASSERT_NOT_NULL(predictedLabels);
|
TEST_ASSERT_NOT_NULL(predictedLabels);
|
||||||
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
|
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
|
||||||
@ -216,11 +280,13 @@ void test_predictReturnsCorrectLabels(void)
|
|||||||
free(predictedLabels);
|
free(predictedLabels);
|
||||||
}
|
}
|
||||||
|
|
||||||
void setUp(void) {
|
void setUp(void)
|
||||||
|
{
|
||||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||||
}
|
}
|
||||||
|
|
||||||
void tearDown(void) {
|
void tearDown(void)
|
||||||
|
{
|
||||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user