Compare commits

..

3 Commits

Author SHA1 Message Date
maxgrf
1b8b8f9427 update neuralNetwork 2025-11-24 12:47:13 +01:00
maxgrf
efd8113350 count 0 gesetzt 2025-11-24 12:42:53 +01:00
maxgrf
1fca7598d6 Daten kopiert 2025-11-24 12:14:10 +01:00
6 changed files with 117 additions and 74 deletions

View File

@ -33,6 +33,7 @@ GrayScaleImageSeries *readImages(const char *path)
return NULL; return NULL;
} }
//liest die Anzahl der Bilder aus //liest die Anzahl der Bilder aus
series->count = 0;
fread(&series->count, sizeof(unsigned short),1, data); fread(&series->count, sizeof(unsigned short),1, data);
series->images = malloc(series->count * sizeof(GrayScaleImage)); series->images = malloc(series->count * sizeof(GrayScaleImage));
if (series->images == NULL){ if (series->images == NULL){

View File

@ -12,7 +12,7 @@ typedef struct
typedef struct typedef struct
{ {
GrayScaleImage *images; //in sich verschachtelte Struktur GrayScaleImage *images;
unsigned char *labels; unsigned char *labels;
unsigned int count; unsigned int count;
} GrayScaleImageSeries; } GrayScaleImageSeries;

View File

@ -123,7 +123,8 @@ void setUp(void) {
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden // Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
} }
void tearDown(void) { void tearDown(void)
{
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden // Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
} }

View File

@ -2,20 +2,22 @@
#include <string.h> #include <string.h>
#include "matrix.h" #include "matrix.h"
// TODO Matrix-Funktionen implementieren
Matrix createMatrix(unsigned int rows, unsigned int cols) Matrix createMatrix(unsigned int rows, unsigned int cols)
{ {
Matrix m = {NULL, 0, 0}; Matrix matrix = {NULL, 0, 0};
if (rows == 0 || cols == 0) if (rows == 0 || cols == 0)
return m; return matrix; //gibt leere Matrix zurück
m.buffer = (MatrixType *)calloc(rows * cols, sizeof(MatrixType)); matrix.buffer = (MatrixType *)calloc(rows * cols, sizeof(MatrixType));
if (m.buffer == NULL) if (matrix.buffer == NULL) //auf verfügbaren Speicherplatz prüfen
return m; return matrix;
m.rows = rows; matrix.rows = rows;
m.cols = cols; matrix.cols = cols;
return m; return matrix; //Matrix zurückgeben
} }
void clearMatrix(Matrix *matrix) void clearMatrix(Matrix *matrix)
@ -23,18 +25,18 @@ void clearMatrix(Matrix *matrix)
if (matrix != NULL) if (matrix != NULL)
{ {
free(matrix->buffer); free(matrix->buffer); //Speicherplatz bereinigen
matrix->buffer = NULL; matrix->buffer = NULL; //Werte auf 0 setzen
matrix->rows = 0; matrix->rows = 0;
matrix->cols = 0; matrix->cols = 0;
} }
} }
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx) void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
// Matrix matrix zu Matrix *matrix, empfehlung
{ {
if (rowIdx < matrix.rows && colIdx < matrix.cols && matrix.buffer != NULL) if (rowIdx < matrix.rows && colIdx < matrix.cols && matrix.buffer != NULL) //Prüft ob Zugriff möglich
matrix.buffer[rowIdx * matrix.cols + colIdx] = value; matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
//schreibt 2D element in 1D Liste: Element_Reihe*Matrix_Spalten + Element_Spalte
} }
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx) MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
@ -45,11 +47,10 @@ MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int co
} }
// TODO: Funktionen implementieren // TODO: Funktionen implementieren
Matrix add(const Matrix matrix1, const Matrix matrix2) Matrix add(const Matrix matrix1, const Matrix matrix2)
{ {
// check, equal rows // immer Probe, gleiche Zeilen der Matrizen
// "Elementweise Addition": test, if two matrix has exact size // "Elementweise Addition": Probe, ob matrix gleiche größe hat
if (matrix1.rows == matrix2.rows && matrix1.cols == matrix2.cols) if (matrix1.rows == matrix2.rows && matrix1.cols == matrix2.cols)
{ {
Matrix result_add = createMatrix(matrix1.rows, matrix1.cols); Matrix result_add = createMatrix(matrix1.rows, matrix1.cols);
@ -64,7 +65,7 @@ Matrix add(const Matrix matrix1, const Matrix matrix2)
} }
return result_add; return result_add;
} }
// "Broadcasting": matrix1 has 1 collum // "Broadcasting": matrix1 hat 1 Spalte
if (matrix1.rows == matrix2.rows && matrix1.cols == 1) if (matrix1.rows == matrix2.rows && matrix1.cols == 1)
{ {
Matrix result_add = createMatrix(matrix1.rows, matrix2.cols); Matrix result_add = createMatrix(matrix1.rows, matrix2.cols);
@ -78,7 +79,7 @@ Matrix add(const Matrix matrix1, const Matrix matrix2)
} }
return result_add; return result_add;
} }
// "Broadcasting": matrix2 has 1 collum // "Broadcasting": matrix2 hat 1 Spalte
if (matrix1.rows == matrix2.rows && matrix2.cols == 1) if (matrix1.rows == matrix2.rows && matrix2.cols == 1)
{ {
Matrix result_add = createMatrix(matrix1.rows, matrix1.cols); Matrix result_add = createMatrix(matrix1.rows, matrix1.cols);
@ -98,13 +99,14 @@ Matrix add(const Matrix matrix1, const Matrix matrix2)
Matrix multiply(const Matrix matrix1, const Matrix matrix2) Matrix multiply(const Matrix matrix1, const Matrix matrix2)
{ {
// Needed: rows/Zeilen, collums/Spalten
MatrixType buffer_add; MatrixType buffer_add;
// Probe ob Spalten1 = Zeilen2
if (matrix1.cols != matrix2.rows) if (!matrix1.buffer || !matrix2.buffer) // Probe ob leere Matrize vorliegt
return createMatrix(0, 0);
if (matrix1.cols != matrix2.rows) // Probe ob Spalten1 = Zeilen2
return createMatrix(0, 0); return createMatrix(0, 0);
Matrix result_mul = createMatrix(matrix1.rows, matrix2.cols); // "" Matrix result_mul = createMatrix(matrix1.rows, matrix2.cols);
for (unsigned int index = 0; index < matrix1.rows; index++) for (unsigned int index = 0; index < matrix1.rows; index++)
{ {
@ -113,12 +115,10 @@ Matrix multiply(const Matrix matrix1, const Matrix matrix2)
buffer_add = 0; buffer_add = 0;
for (unsigned int skalar = 0; skalar < matrix1.cols; skalar++) for (unsigned int skalar = 0; skalar < matrix1.cols; skalar++)
{ {
// buffer_add += matrix1[index][skalar]*matrix2[skalar][shift];
buffer_add += getMatrixAt(matrix1, index, skalar) * getMatrixAt(matrix2, skalar, shift); buffer_add += getMatrixAt(matrix1, index, skalar) * getMatrixAt(matrix2, skalar, shift);
} }
// matrix_mul[index][shift] = buffer_add; setMatrixAt(buffer_add, result_mul, index, shift);
setMatrixAt(buffer_add, result_mul, index, shift); // result als Pointer, also mit &result
} }
} }
return result_mul; return result_mul;
} }

View File

@ -7,10 +7,10 @@ typedef float MatrixType;
// TODO Matrixtyp definieren // TODO Matrixtyp definieren
typedef struct { typedef struct {
MatrixType *matrix; MatrixType *buffer;
unsigned int rows; unsigned int rows;
unsigned int cols; unsigned int cols;
}Matrix; } Matrix;
Matrix createMatrix(unsigned int rows, unsigned int cols); Matrix createMatrix(unsigned int rows, unsigned int cols);

View File

@ -5,10 +5,49 @@
#include "unity.h" #include "unity.h"
#include "neuralNetwork.h" #include "neuralNetwork.h"
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{ {
// TODO FILE *file = fopen(path, "wb");
if (!file)
return;
const char *tag = "__info2_neural_network_file_format__";
fwrite(tag, 1, strlen(tag), file);
// Überprüfung, ob es Layer gibt
if (nn.numberOfLayers == 0)
{
fclose(file);
return;
}
// Schreibe die Eingabe- und Ausgabegrößen des Netzwerks
int input = nn.layers[0].weights.cols;
int output = nn.layers[0].weights.rows;
fwrite(&input, sizeof(int), 1, file);
fwrite(&output, sizeof(int), 1, file);
// Schreibe die Layer-Daten
for (int i = 0; i < nn.numberOfLayers; i++)
{
const Layer *layer = &nn.layers[i];
int out = layer->weights.rows;
int in = layer->weights.cols;
fwrite(layer->weights.buffer, sizeof(MatrixType), out * in, file);
fwrite(layer->biases.buffer, sizeof(MatrixType), out * 1, file);
if (i + 1 < nn.numberOfLayers)
{
int nextOut = nn.layers[i + 1].weights.rows;
fwrite(&nextOut, sizeof(int), 1, file);
}
}
fclose(file);
} }
void test_loadModelReturnsCorrectNumberOfLayers(void) void test_loadModelReturnsCorrectNumberOfLayers(void)
@ -16,15 +55,15 @@ void test_loadModelReturnsCorrectNumberOfLayers(void)
const char *path = "some__nn_test_file.info2"; const char *path = "some__nn_test_file.info2";
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6}; MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6}; MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2}; Matrix weights1 = {.buffer = buffer1, .rows = 3, .cols = 2};
Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3}; Matrix weights2 = {.buffer = buffer2, .rows = 2, .cols = 3};
MatrixType buffer3[] = {1, 2, 3}; MatrixType buffer3[] = {1, 2, 3};
MatrixType buffer4[] = {1, 2}; MatrixType buffer4[] = {1, 2};
Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1}; Matrix biases1 = {.buffer = buffer3, .rows = 3, .cols = 1};
Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1}; Matrix biases2 = {.buffer = buffer4, .rows = 2, .cols = 1};
Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}}; Layer layers[] = {{.weights = weights1, .biases = biases1}, {.weights = weights2, .biases = biases2}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2}; NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 2};
NeuralNetwork netUnderTest; NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet); prepareNeuralNetworkFile(path, expectedNet);
@ -40,12 +79,12 @@ void test_loadModelReturnsCorrectWeightDimensions(void)
{ {
const char *path = "some__nn_test_file.info2"; const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9}; MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights=weights, .biases=biases}}; Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest; NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet); prepareNeuralNetworkFile(path, expectedNet);
@ -63,12 +102,12 @@ void test_loadModelReturnsCorrectBiasDimensions(void)
{ {
const char *path = "some__nn_test_file.info2"; const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9}; MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights=weights, .biases=biases}}; Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest; NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet); prepareNeuralNetworkFile(path, expectedNet);
@ -86,12 +125,12 @@ void test_loadModelReturnsCorrectWeights(void)
{ {
const char *path = "some__nn_test_file.info2"; const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9}; MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights=weights, .biases=biases}}; Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest; NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet); prepareNeuralNetworkFile(path, expectedNet);
@ -111,12 +150,12 @@ void test_loadModelReturnsCorrectBiases(void)
{ {
const char *path = "some__nn_test_file.info2"; const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9}; MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights=weights, .biases=biases}}; Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest; NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet); prepareNeuralNetworkFile(path, expectedNet);
@ -138,7 +177,7 @@ void test_loadModelFailsOnWrongFileTag(void)
NeuralNetwork netUnderTest; NeuralNetwork netUnderTest;
FILE *file = fopen(path, "wb"); FILE *file = fopen(path, "wb");
if(file != NULL) if (file != NULL)
{ {
const char *fileTag = "info2_neural_network_file_format"; const char *fileTag = "info2_neural_network_file_format";
@ -159,12 +198,12 @@ void test_clearModelSetsMembersToNull(void)
{ {
const char *path = "some__nn_test_file.info2"; const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6}; MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2}; Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9}; MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1}; Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights=weights, .biases=biases}}; Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1}; NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest; NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet); prepareNeuralNetworkFile(path, expectedNet);
@ -181,7 +220,7 @@ void test_clearModelSetsMembersToNull(void)
static void someActivation(Matrix *matrix) static void someActivation(Matrix *matrix)
{ {
for(int i = 0; i < matrix->rows * matrix->cols; i++) for (int i = 0; i < matrix->rows * matrix->cols; i++)
{ {
matrix->buffer[i] = fabs(matrix->buffer[i]); matrix->buffer[i] = fabs(matrix->buffer[i]);
} }
@ -192,23 +231,23 @@ void test_predictReturnsCorrectLabels(void)
const unsigned char expectedLabels[] = {4, 2}; const unsigned char expectedLabels[] = {4, 2};
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17}; GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128}; GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}}; GrayScaleImage inputImages[] = {{.buffer = imageBuffer1, .width = 2, .height = 2}, {.buffer = imageBuffer2, .width = 2, .height = 2}};
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8}; MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14}; MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29}; MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4}; Matrix weights1 = {.buffer = weightsBuffer1, .rows = 2, .cols = 4};
Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2}; Matrix weights2 = {.buffer = weightsBuffer2, .rows = 3, .cols = 2};
Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3}; Matrix weights3 = {.buffer = weightsBuffer3, .rows = 5, .cols = 3};
MatrixType biasBuffer1[] = {200, 0}; MatrixType biasBuffer1[] = {200, 0};
MatrixType biasBuffer2[] = {0, -100, 0}; MatrixType biasBuffer2[] = {0, -100, 0};
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0}; MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1}; Matrix biases1 = {.buffer = biasBuffer1, .rows = 2, .cols = 1};
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1}; Matrix biases2 = {.buffer = biasBuffer2, .rows = 3, .cols = 1};
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1}; Matrix biases3 = {.buffer = biasBuffer3, .rows = 5, .cols = 1};
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \ Layer layers[] = {{.weights = weights1, .biases = biases1, .activation = someActivation},
{.weights=weights2, .biases=biases2, .activation=someActivation}, \ {.weights = weights2, .biases = biases2, .activation = someActivation},
{.weights=weights3, .biases=biases3, .activation=someActivation}}; {.weights = weights3, .biases = biases3, .activation = someActivation}};
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3}; NeuralNetwork netUnderTest = {.layers = layers, .numberOfLayers = 3};
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2); unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
TEST_ASSERT_NOT_NULL(predictedLabels); TEST_ASSERT_NOT_NULL(predictedLabels);
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0])); int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
@ -216,11 +255,13 @@ void test_predictReturnsCorrectLabels(void)
free(predictedLabels); free(predictedLabels);
} }
void setUp(void) { void setUp(void)
{
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden // Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
} }
void tearDown(void) { void tearDown(void)
{
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden // Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
} }