Compare commits

..

3 Commits

Author SHA1 Message Date
maxgrf
1b8b8f9427 update neuralNetwork 2025-11-24 12:47:13 +01:00
maxgrf
efd8113350 count 0 gesetzt 2025-11-24 12:42:53 +01:00
maxgrf
1fca7598d6 Daten kopiert 2025-11-24 12:14:10 +01:00
6 changed files with 117 additions and 74 deletions

View File

@ -33,6 +33,7 @@ GrayScaleImageSeries *readImages(const char *path)
return NULL;
}
//liest die Anzahl der Bilder aus
series->count = 0;
fread(&series->count, sizeof(unsigned short),1, data);
series->images = malloc(series->count * sizeof(GrayScaleImage));
if (series->images == NULL){

View File

@ -12,7 +12,7 @@ typedef struct
typedef struct
{
GrayScaleImage *images; //in sich verschachtelte Struktur
GrayScaleImage *images;
unsigned char *labels;
unsigned int count;
} GrayScaleImageSeries;

View File

@ -123,7 +123,8 @@ void setUp(void) {
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
}
void tearDown(void) {
void tearDown(void)
{
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
}

View File

@ -2,20 +2,22 @@
#include <string.h>
#include "matrix.h"
// TODO Matrix-Funktionen implementieren
Matrix createMatrix(unsigned int rows, unsigned int cols)
{
Matrix m = {NULL, 0, 0};
Matrix matrix = {NULL, 0, 0};
if (rows == 0 || cols == 0)
return m;
return matrix; //gibt leere Matrix zurück
m.buffer = (MatrixType *)calloc(rows * cols, sizeof(MatrixType));
if (m.buffer == NULL)
return m;
matrix.buffer = (MatrixType *)calloc(rows * cols, sizeof(MatrixType));
if (matrix.buffer == NULL) //auf verfügbaren Speicherplatz prüfen
return matrix;
m.rows = rows;
m.cols = cols;
return m;
matrix.rows = rows;
matrix.cols = cols;
return matrix; //Matrix zurückgeben
}
void clearMatrix(Matrix *matrix)
@ -23,18 +25,18 @@ void clearMatrix(Matrix *matrix)
if (matrix != NULL)
{
free(matrix->buffer);
matrix->buffer = NULL;
free(matrix->buffer); //Speicherplatz bereinigen
matrix->buffer = NULL; //Werte auf 0 setzen
matrix->rows = 0;
matrix->cols = 0;
}
}
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
// Matrix matrix zu Matrix *matrix, empfehlung
{
if (rowIdx < matrix.rows && colIdx < matrix.cols && matrix.buffer != NULL)
if (rowIdx < matrix.rows && colIdx < matrix.cols && matrix.buffer != NULL) //Prüft ob Zugriff möglich
matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
//schreibt 2D element in 1D Liste: Element_Reihe*Matrix_Spalten + Element_Spalte
}
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
@ -45,11 +47,10 @@ MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int co
}
// TODO: Funktionen implementieren
Matrix add(const Matrix matrix1, const Matrix matrix2)
{
// check, equal rows
// "Elementweise Addition": test, if two matrix has exact size
// immer Probe, gleiche Zeilen der Matrizen
// "Elementweise Addition": Probe, ob matrix gleiche größe hat
if (matrix1.rows == matrix2.rows && matrix1.cols == matrix2.cols)
{
Matrix result_add = createMatrix(matrix1.rows, matrix1.cols);
@ -64,7 +65,7 @@ Matrix add(const Matrix matrix1, const Matrix matrix2)
}
return result_add;
}
// "Broadcasting": matrix1 has 1 collum
// "Broadcasting": matrix1 hat 1 Spalte
if (matrix1.rows == matrix2.rows && matrix1.cols == 1)
{
Matrix result_add = createMatrix(matrix1.rows, matrix2.cols);
@ -78,7 +79,7 @@ Matrix add(const Matrix matrix1, const Matrix matrix2)
}
return result_add;
}
// "Broadcasting": matrix2 has 1 collum
// "Broadcasting": matrix2 hat 1 Spalte
if (matrix1.rows == matrix2.rows && matrix2.cols == 1)
{
Matrix result_add = createMatrix(matrix1.rows, matrix1.cols);
@ -98,13 +99,14 @@ Matrix add(const Matrix matrix1, const Matrix matrix2)
Matrix multiply(const Matrix matrix1, const Matrix matrix2)
{
// Needed: rows/Zeilen, collums/Spalten
MatrixType buffer_add;
// Probe ob Spalten1 = Zeilen2
if (matrix1.cols != matrix2.rows)
if (!matrix1.buffer || !matrix2.buffer) // Probe ob leere Matrize vorliegt
return createMatrix(0, 0);
if (matrix1.cols != matrix2.rows) // Probe ob Spalten1 = Zeilen2
return createMatrix(0, 0);
Matrix result_mul = createMatrix(matrix1.rows, matrix2.cols); // ""
Matrix result_mul = createMatrix(matrix1.rows, matrix2.cols);
for (unsigned int index = 0; index < matrix1.rows; index++)
{
@ -113,11 +115,9 @@ Matrix multiply(const Matrix matrix1, const Matrix matrix2)
buffer_add = 0;
for (unsigned int skalar = 0; skalar < matrix1.cols; skalar++)
{
// buffer_add += matrix1[index][skalar]*matrix2[skalar][shift];
buffer_add += getMatrixAt(matrix1, index, skalar) * getMatrixAt(matrix2, skalar, shift);
}
// matrix_mul[index][shift] = buffer_add;
setMatrixAt(buffer_add, result_mul, index, shift); // result als Pointer, also mit &result
setMatrixAt(buffer_add, result_mul, index, shift);
}
}
return result_mul;

View File

@ -7,10 +7,10 @@ typedef float MatrixType;
// TODO Matrixtyp definieren
typedef struct {
MatrixType *matrix;
MatrixType *buffer;
unsigned int rows;
unsigned int cols;
}Matrix;
} Matrix;
Matrix createMatrix(unsigned int rows, unsigned int cols);

View File

@ -5,10 +5,49 @@
#include "unity.h"
#include "neuralNetwork.h"
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{
// TODO
FILE *file = fopen(path, "wb");
if (!file)
return;
const char *tag = "__info2_neural_network_file_format__";
fwrite(tag, 1, strlen(tag), file);
// Überprüfung, ob es Layer gibt
if (nn.numberOfLayers == 0)
{
fclose(file);
return;
}
// Schreibe die Eingabe- und Ausgabegrößen des Netzwerks
int input = nn.layers[0].weights.cols;
int output = nn.layers[0].weights.rows;
fwrite(&input, sizeof(int), 1, file);
fwrite(&output, sizeof(int), 1, file);
// Schreibe die Layer-Daten
for (int i = 0; i < nn.numberOfLayers; i++)
{
const Layer *layer = &nn.layers[i];
int out = layer->weights.rows;
int in = layer->weights.cols;
fwrite(layer->weights.buffer, sizeof(MatrixType), out * in, file);
fwrite(layer->biases.buffer, sizeof(MatrixType), out * 1, file);
if (i + 1 < nn.numberOfLayers)
{
int nextOut = nn.layers[i + 1].weights.rows;
fwrite(&nextOut, sizeof(int), 1, file);
}
}
fclose(file);
}
void test_loadModelReturnsCorrectNumberOfLayers(void)
@ -16,15 +55,15 @@ void test_loadModelReturnsCorrectNumberOfLayers(void)
const char *path = "some__nn_test_file.info2";
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2};
Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3};
Matrix weights1 = {.buffer = buffer1, .rows = 3, .cols = 2};
Matrix weights2 = {.buffer = buffer2, .rows = 2, .cols = 3};
MatrixType buffer3[] = {1, 2, 3};
MatrixType buffer4[] = {1, 2};
Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1};
Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1};
Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}};
Matrix biases1 = {.buffer = buffer3, .rows = 3, .cols = 1};
Matrix biases2 = {.buffer = buffer4, .rows = 2, .cols = 1};
Layer layers[] = {{.weights = weights1, .biases = biases1}, {.weights = weights2, .biases = biases2}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 2};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
@ -40,12 +79,12 @@ void test_loadModelReturnsCorrectWeightDimensions(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
@ -63,12 +102,12 @@ void test_loadModelReturnsCorrectBiasDimensions(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
@ -86,12 +125,12 @@ void test_loadModelReturnsCorrectWeights(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
@ -111,12 +150,12 @@ void test_loadModelReturnsCorrectBiases(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
@ -138,7 +177,7 @@ void test_loadModelFailsOnWrongFileTag(void)
NeuralNetwork netUnderTest;
FILE *file = fopen(path, "wb");
if(file != NULL)
if (file != NULL)
{
const char *fileTag = "info2_neural_network_file_format";
@ -159,12 +198,12 @@ void test_clearModelSetsMembersToNull(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
@ -181,7 +220,7 @@ void test_clearModelSetsMembersToNull(void)
static void someActivation(Matrix *matrix)
{
for(int i = 0; i < matrix->rows * matrix->cols; i++)
for (int i = 0; i < matrix->rows * matrix->cols; i++)
{
matrix->buffer[i] = fabs(matrix->buffer[i]);
}
@ -192,23 +231,23 @@ void test_predictReturnsCorrectLabels(void)
const unsigned char expectedLabels[] = {4, 2};
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}};
GrayScaleImage inputImages[] = {{.buffer = imageBuffer1, .width = 2, .height = 2}, {.buffer = imageBuffer2, .width = 2, .height = 2}};
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4};
Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2};
Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3};
Matrix weights1 = {.buffer = weightsBuffer1, .rows = 2, .cols = 4};
Matrix weights2 = {.buffer = weightsBuffer2, .rows = 3, .cols = 2};
Matrix weights3 = {.buffer = weightsBuffer3, .rows = 5, .cols = 3};
MatrixType biasBuffer1[] = {200, 0};
MatrixType biasBuffer2[] = {0, -100, 0};
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
{.weights=weights2, .biases=biases2, .activation=someActivation}, \
{.weights=weights3, .biases=biases3, .activation=someActivation}};
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
Matrix biases1 = {.buffer = biasBuffer1, .rows = 2, .cols = 1};
Matrix biases2 = {.buffer = biasBuffer2, .rows = 3, .cols = 1};
Matrix biases3 = {.buffer = biasBuffer3, .rows = 5, .cols = 1};
Layer layers[] = {{.weights = weights1, .biases = biases1, .activation = someActivation},
{.weights = weights2, .biases = biases2, .activation = someActivation},
{.weights = weights3, .biases = biases3, .activation = someActivation}};
NeuralNetwork netUnderTest = {.layers = layers, .numberOfLayers = 3};
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
TEST_ASSERT_NOT_NULL(predictedLabels);
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
@ -216,11 +255,13 @@ void test_predictReturnsCorrectLabels(void)
free(predictedLabels);
}
void setUp(void) {
void setUp(void)
{
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
}
void tearDown(void) {
void tearDown(void)
{
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
}