Compare commits

..

2 Commits

Author SHA1 Message Date
c064566efd schöne Version 2025-11-20 14:55:42 +01:00
d30596939a image Input fertig 2025-11-20 14:34:36 +01:00
6 changed files with 74 additions and 117 deletions

View File

@ -33,7 +33,6 @@ GrayScaleImageSeries *readImages(const char *path)
return NULL; return NULL;
} }
//liest die Anzahl der Bilder aus //liest die Anzahl der Bilder aus
series->count = 0;
fread(&series->count, sizeof(unsigned short),1, data); fread(&series->count, sizeof(unsigned short),1, data);
series->images = malloc(series->count * sizeof(GrayScaleImage)); series->images = malloc(series->count * sizeof(GrayScaleImage));
if (series->images == NULL){ if (series->images == NULL){

View File

@ -12,7 +12,7 @@ typedef struct
typedef struct typedef struct
{ {
GrayScaleImage *images; GrayScaleImage *images; //in sich verschachtelte Struktur
unsigned char *labels; unsigned char *labels;
unsigned int count; unsigned int count;
} GrayScaleImageSeries; } GrayScaleImageSeries;

View File

@ -123,8 +123,7 @@ void setUp(void) {
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden // Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
} }
void tearDown(void) void tearDown(void) {
{
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden // Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
} }

View File

@ -2,22 +2,20 @@
#include <string.h> #include <string.h>
#include "matrix.h" #include "matrix.h"
// TODO Matrix-Funktionen implementieren
Matrix createMatrix(unsigned int rows, unsigned int cols) Matrix createMatrix(unsigned int rows, unsigned int cols)
{ {
Matrix matrix = {NULL, 0, 0}; Matrix m = {NULL, 0, 0};
if (rows == 0 || cols == 0) if (rows == 0 || cols == 0)
return matrix; //gibt leere Matrix zurück return m;
matrix.buffer = (MatrixType *)calloc(rows * cols, sizeof(MatrixType)); m.buffer = (MatrixType *)calloc(rows * cols, sizeof(MatrixType));
if (matrix.buffer == NULL) //auf verfügbaren Speicherplatz prüfen if (m.buffer == NULL)
return matrix; return m;
matrix.rows = rows; m.rows = rows;
matrix.cols = cols; m.cols = cols;
return matrix; //Matrix zurückgeben return m;
} }
void clearMatrix(Matrix *matrix) void clearMatrix(Matrix *matrix)
@ -25,18 +23,18 @@ void clearMatrix(Matrix *matrix)
if (matrix != NULL) if (matrix != NULL)
{ {
free(matrix->buffer); //Speicherplatz bereinigen free(matrix->buffer);
matrix->buffer = NULL; //Werte auf 0 setzen matrix->buffer = NULL;
matrix->rows = 0; matrix->rows = 0;
matrix->cols = 0; matrix->cols = 0;
} }
} }
void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx) void setMatrixAt(MatrixType value, Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
// Matrix matrix zu Matrix *matrix, empfehlung
{ {
if (rowIdx < matrix.rows && colIdx < matrix.cols && matrix.buffer != NULL) //Prüft ob Zugriff möglich if (rowIdx < matrix.rows && colIdx < matrix.cols && matrix.buffer != NULL)
matrix.buffer[rowIdx * matrix.cols + colIdx] = value; matrix.buffer[rowIdx * matrix.cols + colIdx] = value;
//schreibt 2D element in 1D Liste: Element_Reihe*Matrix_Spalten + Element_Spalte
} }
MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx) MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int colIdx)
@ -47,10 +45,11 @@ MatrixType getMatrixAt(const Matrix matrix, unsigned int rowIdx, unsigned int co
} }
// TODO: Funktionen implementieren // TODO: Funktionen implementieren
Matrix add(const Matrix matrix1, const Matrix matrix2) Matrix add(const Matrix matrix1, const Matrix matrix2)
{ {
// immer Probe, gleiche Zeilen der Matrizen // check, equal rows
// "Elementweise Addition": Probe, ob matrix gleiche größe hat // "Elementweise Addition": test, if two matrix has exact size
if (matrix1.rows == matrix2.rows && matrix1.cols == matrix2.cols) if (matrix1.rows == matrix2.rows && matrix1.cols == matrix2.cols)
{ {
Matrix result_add = createMatrix(matrix1.rows, matrix1.cols); Matrix result_add = createMatrix(matrix1.rows, matrix1.cols);
@ -65,7 +64,7 @@ Matrix add(const Matrix matrix1, const Matrix matrix2)
} }
return result_add; return result_add;
} }
// "Broadcasting": matrix1 hat 1 Spalte // "Broadcasting": matrix1 has 1 collum
if (matrix1.rows == matrix2.rows && matrix1.cols == 1) if (matrix1.rows == matrix2.rows && matrix1.cols == 1)
{ {
Matrix result_add = createMatrix(matrix1.rows, matrix2.cols); Matrix result_add = createMatrix(matrix1.rows, matrix2.cols);
@ -79,7 +78,7 @@ Matrix add(const Matrix matrix1, const Matrix matrix2)
} }
return result_add; return result_add;
} }
// "Broadcasting": matrix2 hat 1 Spalte // "Broadcasting": matrix2 has 1 collum
if (matrix1.rows == matrix2.rows && matrix2.cols == 1) if (matrix1.rows == matrix2.rows && matrix2.cols == 1)
{ {
Matrix result_add = createMatrix(matrix1.rows, matrix1.cols); Matrix result_add = createMatrix(matrix1.rows, matrix1.cols);
@ -99,14 +98,13 @@ Matrix add(const Matrix matrix1, const Matrix matrix2)
Matrix multiply(const Matrix matrix1, const Matrix matrix2) Matrix multiply(const Matrix matrix1, const Matrix matrix2)
{ {
// Needed: rows/Zeilen, collums/Spalten
MatrixType buffer_add; MatrixType buffer_add;
// Probe ob Spalten1 = Zeilen2
if (!matrix1.buffer || !matrix2.buffer) // Probe ob leere Matrize vorliegt if (matrix1.cols != matrix2.rows)
return createMatrix(0, 0);
if (matrix1.cols != matrix2.rows) // Probe ob Spalten1 = Zeilen2
return createMatrix(0, 0); return createMatrix(0, 0);
Matrix result_mul = createMatrix(matrix1.rows, matrix2.cols); Matrix result_mul = createMatrix(matrix1.rows, matrix2.cols); // ""
for (unsigned int index = 0; index < matrix1.rows; index++) for (unsigned int index = 0; index < matrix1.rows; index++)
{ {
@ -115,9 +113,11 @@ Matrix multiply(const Matrix matrix1, const Matrix matrix2)
buffer_add = 0; buffer_add = 0;
for (unsigned int skalar = 0; skalar < matrix1.cols; skalar++) for (unsigned int skalar = 0; skalar < matrix1.cols; skalar++)
{ {
// buffer_add += matrix1[index][skalar]*matrix2[skalar][shift];
buffer_add += getMatrixAt(matrix1, index, skalar) * getMatrixAt(matrix2, skalar, shift); buffer_add += getMatrixAt(matrix1, index, skalar) * getMatrixAt(matrix2, skalar, shift);
} }
setMatrixAt(buffer_add, result_mul, index, shift); // matrix_mul[index][shift] = buffer_add;
setMatrixAt(buffer_add, result_mul, index, shift); // result als Pointer, also mit &result
} }
} }
return result_mul; return result_mul;

View File

@ -7,7 +7,7 @@ typedef float MatrixType;
// TODO Matrixtyp definieren // TODO Matrixtyp definieren
typedef struct { typedef struct {
MatrixType *buffer; MatrixType *matrix;
unsigned int rows; unsigned int rows;
unsigned int cols; unsigned int cols;
}Matrix; }Matrix;

View File

@ -5,49 +5,10 @@
#include "unity.h" #include "unity.h"
#include "neuralNetwork.h" #include "neuralNetwork.h"
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn) static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{ {
FILE *file = fopen(path, "wb"); // TODO
if (!file)
return;
const char *tag = "__info2_neural_network_file_format__";
fwrite(tag, 1, strlen(tag), file);
// Überprüfung, ob es Layer gibt
if (nn.numberOfLayers == 0)
{
fclose(file);
return;
}
// Schreibe die Eingabe- und Ausgabegrößen des Netzwerks
int input = nn.layers[0].weights.cols;
int output = nn.layers[0].weights.rows;
fwrite(&input, sizeof(int), 1, file);
fwrite(&output, sizeof(int), 1, file);
// Schreibe die Layer-Daten
for (int i = 0; i < nn.numberOfLayers; i++)
{
const Layer *layer = &nn.layers[i];
int out = layer->weights.rows;
int in = layer->weights.cols;
fwrite(layer->weights.buffer, sizeof(MatrixType), out * in, file);
fwrite(layer->biases.buffer, sizeof(MatrixType), out * 1, file);
if (i + 1 < nn.numberOfLayers)
{
int nextOut = nn.layers[i + 1].weights.rows;
fwrite(&nextOut, sizeof(int), 1, file);
}
}
fclose(file);
} }
void test_loadModelReturnsCorrectNumberOfLayers(void) void test_loadModelReturnsCorrectNumberOfLayers(void)
@ -244,8 +205,8 @@ void test_predictReturnsCorrectLabels(void)
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1}; Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1}; Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1}; Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
Layer layers[] = {{.weights = weights1, .biases = biases1, .activation = someActivation}, Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
{.weights = weights2, .biases = biases2, .activation = someActivation}, {.weights=weights2, .biases=biases2, .activation=someActivation}, \
{.weights=weights3, .biases=biases3, .activation=someActivation}}; {.weights=weights3, .biases=biases3, .activation=someActivation}};
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3}; NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2); unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
@ -255,13 +216,11 @@ void test_predictReturnsCorrectLabels(void)
free(predictedLabels); free(predictedLabels);
} }
void setUp(void) void setUp(void) {
{
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden // Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
} }
void tearDown(void) void tearDown(void) {
{
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden // Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
} }