Compare commits
14 Commits
master
...
matrix_max
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
54ca7acca2 | ||
|
|
b998717e19 | ||
|
|
89262e4763 | ||
|
|
75dc5fc631 | ||
|
|
d36d185214 | ||
|
|
6c514d28ca | ||
|
|
3a6cf8a104 | ||
|
|
e25875fac6 | ||
|
|
2dffac5f07 | ||
|
|
b30c2a3808 | ||
|
|
89e99abf8e | ||
|
|
113cb5adb3 | ||
|
|
bf7355b3c5 | ||
|
|
7a373d5940 |
83
imageInput.c
83
imageInput.c
@ -6,96 +6,17 @@
|
|||||||
#define BUFFER_SIZE 100
|
#define BUFFER_SIZE 100
|
||||||
#define FILE_HEADER_STRING "__info2_image_file_format__"
|
#define FILE_HEADER_STRING "__info2_image_file_format__"
|
||||||
|
|
||||||
|
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
|
||||||
|
|
||||||
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
|
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
|
||||||
GrayScaleImageSeries *readImages(const char *path)
|
GrayScaleImageSeries *readImages(const char *path)
|
||||||
{
|
{
|
||||||
// Initialisiert einen Zeiger zur struct und reserviert Speicherplatz
|
GrayScaleImageSeries *series = NULL;
|
||||||
GrayScaleImageSeries *series = malloc(sizeof(GrayScaleImageSeries));
|
|
||||||
if(series == NULL){
|
|
||||||
printf("Es ist nicht genügend Speicher übrig");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
FILE * data = fopen(path, "rb");
|
|
||||||
if (data == NULL){
|
|
||||||
printf("Die Datei konnte nicht gelesen werden");
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Überprüfung, ob die Datei einen Header hat
|
|
||||||
char header[BUFFER_SIZE];
|
|
||||||
fread(header, strlen(FILE_HEADER_STRING), 1, data);
|
|
||||||
header[strlen(FILE_HEADER_STRING)] ='\0';
|
|
||||||
if(strncmp(header, FILE_HEADER_STRING, strlen(FILE_HEADER_STRING) )!= 0){
|
|
||||||
printf("Die Datei hat keinen Header");
|
|
||||||
fclose(data);
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
//liest die Anzahl der Bilder aus
|
|
||||||
series->count = 0;
|
|
||||||
fread(&series->count, sizeof(unsigned short),1, data);
|
|
||||||
series->images = malloc(series->count * sizeof(GrayScaleImage));
|
|
||||||
if (series->images == NULL){
|
|
||||||
printf("Es ist nicht genügend Speicher übrig");
|
|
||||||
fclose(data);
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
//liest die Höhe und Breite der Bilder aus
|
|
||||||
unsigned short height = 0, width = 0;
|
|
||||||
fread(&width, sizeof(unsigned short), 1, data);
|
|
||||||
fread(&height, sizeof(unsigned short), 1, data);
|
|
||||||
|
|
||||||
//reserviert Speicher für die Labels, die aber erst nach jedem Bild eingelesen werden
|
|
||||||
series->labels = malloc(sizeof(unsigned char) * series->count);
|
|
||||||
if (series->labels == NULL){
|
|
||||||
printf("Es ist nicht genügend Speicher übrig");
|
|
||||||
free(series->images);
|
|
||||||
fclose(data);
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
//liest jedes Bild einzeln aus und speichert es in images
|
|
||||||
for(int counter_picture = 0 ; counter_picture < series->count; counter_picture++){
|
|
||||||
|
|
||||||
// für jedes Bild muss vorher eine Größe festgelegt werden, die jedoch in diesem Fall immer gleich ist
|
|
||||||
series->images[counter_picture].width = width;
|
|
||||||
series->images[counter_picture].height =height;
|
|
||||||
unsigned int size_picture = height * width;
|
|
||||||
|
|
||||||
//reservieren des Speichers für Buffer, der die einzelnen Pixels speichert
|
|
||||||
series->images[counter_picture].buffer = malloc(size_picture* sizeof(GrayScalePixelType));
|
|
||||||
if (series->images[counter_picture].buffer == NULL){
|
|
||||||
printf("Es ist nicht genügend Speicher übrig");
|
|
||||||
free(series->images);
|
|
||||||
free(series);
|
|
||||||
fclose(data);
|
|
||||||
return NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
//einlesen der einzelnen Pixel in buffer
|
|
||||||
for(int counter_pixels = 0; counter_pixels < size_picture; counter_pixels++){
|
|
||||||
fread(&series->images[counter_picture].buffer[counter_pixels], sizeof(unsigned char), 1, data);
|
|
||||||
}
|
|
||||||
|
|
||||||
//einlesen der Labels
|
|
||||||
fread(&series->labels[counter_picture], sizeof(unsigned char), 1, data);
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
fclose(data);
|
|
||||||
return series;
|
return series;
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
|
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
|
||||||
void clearSeries(GrayScaleImageSeries *series)
|
void clearSeries(GrayScaleImageSeries *series)
|
||||||
{
|
{
|
||||||
//erst den Speicherplatz der Pixel freigeben
|
|
||||||
for(int number= 0; number < series->count; number++){
|
|
||||||
free(series->images[number].buffer);
|
|
||||||
}
|
|
||||||
// dann die Bilder freigeben
|
|
||||||
free(series-> images);
|
|
||||||
free(series);
|
|
||||||
}
|
}
|
||||||
@ -123,8 +123,7 @@ void setUp(void) {
|
|||||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||||
}
|
}
|
||||||
|
|
||||||
void tearDown(void)
|
void tearDown(void) {
|
||||||
{
|
|
||||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@ -5,49 +5,10 @@
|
|||||||
#include "unity.h"
|
#include "unity.h"
|
||||||
#include "neuralNetwork.h"
|
#include "neuralNetwork.h"
|
||||||
|
|
||||||
|
|
||||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||||
{
|
{
|
||||||
FILE *file = fopen(path, "wb");
|
// TODO
|
||||||
if (!file)
|
|
||||||
return;
|
|
||||||
|
|
||||||
const char *tag = "__info2_neural_network_file_format__";
|
|
||||||
fwrite(tag, 1, strlen(tag), file);
|
|
||||||
|
|
||||||
// Überprüfung, ob es Layer gibt
|
|
||||||
if (nn.numberOfLayers == 0)
|
|
||||||
{
|
|
||||||
fclose(file);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Schreibe die Eingabe- und Ausgabegrößen des Netzwerks
|
|
||||||
int input = nn.layers[0].weights.cols;
|
|
||||||
int output = nn.layers[0].weights.rows;
|
|
||||||
|
|
||||||
fwrite(&input, sizeof(int), 1, file);
|
|
||||||
fwrite(&output, sizeof(int), 1, file);
|
|
||||||
|
|
||||||
// Schreibe die Layer-Daten
|
|
||||||
for (int i = 0; i < nn.numberOfLayers; i++)
|
|
||||||
{
|
|
||||||
const Layer *layer = &nn.layers[i];
|
|
||||||
int out = layer->weights.rows;
|
|
||||||
int in = layer->weights.cols;
|
|
||||||
|
|
||||||
fwrite(layer->weights.buffer, sizeof(MatrixType), out * in, file);
|
|
||||||
|
|
||||||
fwrite(layer->biases.buffer, sizeof(MatrixType), out * 1, file);
|
|
||||||
|
|
||||||
if (i + 1 < nn.numberOfLayers)
|
|
||||||
{
|
|
||||||
int nextOut = nn.layers[i + 1].weights.rows;
|
|
||||||
fwrite(&nextOut, sizeof(int), 1, file);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
fclose(file);
|
|
||||||
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||||
@ -244,8 +205,8 @@ void test_predictReturnsCorrectLabels(void)
|
|||||||
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
|
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
|
||||||
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
|
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
|
||||||
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
|
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
|
||||||
Layer layers[] = {{.weights = weights1, .biases = biases1, .activation = someActivation},
|
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
|
||||||
{.weights = weights2, .biases = biases2, .activation = someActivation},
|
{.weights=weights2, .biases=biases2, .activation=someActivation}, \
|
||||||
{.weights=weights3, .biases=biases3, .activation=someActivation}};
|
{.weights=weights3, .biases=biases3, .activation=someActivation}};
|
||||||
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
|
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
|
||||||
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
||||||
@ -255,13 +216,11 @@ void test_predictReturnsCorrectLabels(void)
|
|||||||
free(predictedLabels);
|
free(predictedLabels);
|
||||||
}
|
}
|
||||||
|
|
||||||
void setUp(void)
|
void setUp(void) {
|
||||||
{
|
|
||||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||||
}
|
}
|
||||||
|
|
||||||
void tearDown(void)
|
void tearDown(void) {
|
||||||
{
|
|
||||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user