Compare commits

..

14 Commits

Author SHA1 Message Date
maxgrf
54ca7acca2 Kommentare angepasst 2025-11-20 14:27:47 +01:00
maxgrf
b998717e19 angepasste Kommentare 2025-11-20 14:12:47 +01:00
maxgrf
89262e4763 weitere Absicherung multiply 2025-11-18 13:18:29 +01:00
maxgrf
75dc5fc631 formatiert 2025-11-16 21:31:24 +01:00
maxgrf
d36d185214 error fix matrix 2025-11-16 21:29:56 +01:00
maxgrf
6c514d28ca error fix matrix 2025-11-16 21:15:00 +01:00
maxgrf
3a6cf8a104 Broadcasting implementiert 2025-11-16 21:11:25 +01:00
maxgrf
e25875fac6 reload 2025-11-15 04:07:49 +01:00
maxgrf
2dffac5f07 return in add und mul 2025-11-15 04:01:27 +01:00
maxgrf
b30c2a3808 error fix matrix.c 2025-11-15 03:58:42 +01:00
maxgrf
89e99abf8e matrix.h Matrxtyp definiert 2025-11-15 03:51:18 +01:00
maxgrf
113cb5adb3 fix errors in matrix 2025-11-15 03:49:05 +01:00
maxgrf
bf7355b3c5 matrix function written 2025-11-15 03:42:28 +01:00
maxgrf
7a373d5940 test2 2025-11-12 09:26:31 +01:00
3 changed files with 46 additions and 167 deletions

View File

@ -6,96 +6,17 @@
#define BUFFER_SIZE 100
#define FILE_HEADER_STRING "__info2_image_file_format__"
// TODO Implementieren Sie geeignete Hilfsfunktionen für das Lesen der Bildserie aus einer Datei
// TODO Vervollständigen Sie die Funktion readImages unter Benutzung Ihrer Hilfsfunktionen
GrayScaleImageSeries *readImages(const char *path)
{
// Initialisiert einen Zeiger zur struct und reserviert Speicherplatz
GrayScaleImageSeries *series = malloc(sizeof(GrayScaleImageSeries));
if(series == NULL){
printf("Es ist nicht genügend Speicher übrig");
return NULL;
}
FILE * data = fopen(path, "rb");
if (data == NULL){
printf("Die Datei konnte nicht gelesen werden");
return NULL;
}
// Überprüfung, ob die Datei einen Header hat
char header[BUFFER_SIZE];
fread(header, strlen(FILE_HEADER_STRING), 1, data);
header[strlen(FILE_HEADER_STRING)] ='\0';
if(strncmp(header, FILE_HEADER_STRING, strlen(FILE_HEADER_STRING) )!= 0){
printf("Die Datei hat keinen Header");
fclose(data);
return NULL;
}
//liest die Anzahl der Bilder aus
series->count = 0;
fread(&series->count, sizeof(unsigned short),1, data);
series->images = malloc(series->count * sizeof(GrayScaleImage));
if (series->images == NULL){
printf("Es ist nicht genügend Speicher übrig");
fclose(data);
return NULL;
}
//liest die Höhe und Breite der Bilder aus
unsigned short height = 0, width = 0;
fread(&width, sizeof(unsigned short), 1, data);
fread(&height, sizeof(unsigned short), 1, data);
GrayScaleImageSeries *series = NULL;
//reserviert Speicher für die Labels, die aber erst nach jedem Bild eingelesen werden
series->labels = malloc(sizeof(unsigned char) * series->count);
if (series->labels == NULL){
printf("Es ist nicht genügend Speicher übrig");
free(series->images);
fclose(data);
return NULL;
}
//liest jedes Bild einzeln aus und speichert es in images
for(int counter_picture = 0 ; counter_picture < series->count; counter_picture++){
// für jedes Bild muss vorher eine Größe festgelegt werden, die jedoch in diesem Fall immer gleich ist
series->images[counter_picture].width = width;
series->images[counter_picture].height =height;
unsigned int size_picture = height * width;
//reservieren des Speichers für Buffer, der die einzelnen Pixels speichert
series->images[counter_picture].buffer = malloc(size_picture* sizeof(GrayScalePixelType));
if (series->images[counter_picture].buffer == NULL){
printf("Es ist nicht genügend Speicher übrig");
free(series->images);
free(series);
fclose(data);
return NULL;
}
//einlesen der einzelnen Pixel in buffer
for(int counter_pixels = 0; counter_pixels < size_picture; counter_pixels++){
fread(&series->images[counter_picture].buffer[counter_pixels], sizeof(unsigned char), 1, data);
}
//einlesen der Labels
fread(&series->labels[counter_picture], sizeof(unsigned char), 1, data);
}
fclose(data);
return series;
}
// TODO Vervollständigen Sie die Funktion clearSeries, welche eine Bildserie vollständig aus dem Speicher freigibt
void clearSeries(GrayScaleImageSeries *series)
{
//erst den Speicherplatz der Pixel freigeben
for(int number= 0; number < series->count; number++){
free(series->images[number].buffer);
}
// dann die Bilder freigeben
free(series-> images);
free(series);
}

View File

@ -123,8 +123,7 @@ void setUp(void) {
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
}
void tearDown(void)
{
void tearDown(void) {
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
}

View File

@ -5,49 +5,10 @@
#include "unity.h"
#include "neuralNetwork.h"
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
{
FILE *file = fopen(path, "wb");
if (!file)
return;
const char *tag = "__info2_neural_network_file_format__";
fwrite(tag, 1, strlen(tag), file);
// Überprüfung, ob es Layer gibt
if (nn.numberOfLayers == 0)
{
fclose(file);
return;
}
// Schreibe die Eingabe- und Ausgabegrößen des Netzwerks
int input = nn.layers[0].weights.cols;
int output = nn.layers[0].weights.rows;
fwrite(&input, sizeof(int), 1, file);
fwrite(&output, sizeof(int), 1, file);
// Schreibe die Layer-Daten
for (int i = 0; i < nn.numberOfLayers; i++)
{
const Layer *layer = &nn.layers[i];
int out = layer->weights.rows;
int in = layer->weights.cols;
fwrite(layer->weights.buffer, sizeof(MatrixType), out * in, file);
fwrite(layer->biases.buffer, sizeof(MatrixType), out * 1, file);
if (i + 1 < nn.numberOfLayers)
{
int nextOut = nn.layers[i + 1].weights.rows;
fwrite(&nextOut, sizeof(int), 1, file);
}
}
fclose(file);
// TODO
}
void test_loadModelReturnsCorrectNumberOfLayers(void)
@ -55,15 +16,15 @@ void test_loadModelReturnsCorrectNumberOfLayers(void)
const char *path = "some__nn_test_file.info2";
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
Matrix weights1 = {.buffer = buffer1, .rows = 3, .cols = 2};
Matrix weights2 = {.buffer = buffer2, .rows = 2, .cols = 3};
Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2};
Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3};
MatrixType buffer3[] = {1, 2, 3};
MatrixType buffer4[] = {1, 2};
Matrix biases1 = {.buffer = buffer3, .rows = 3, .cols = 1};
Matrix biases2 = {.buffer = buffer4, .rows = 2, .cols = 1};
Layer layers[] = {{.weights = weights1, .biases = biases1}, {.weights = weights2, .biases = biases2}};
Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1};
Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1};
Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 2};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
@ -79,12 +40,12 @@ void test_loadModelReturnsCorrectWeightDimensions(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
@ -102,12 +63,12 @@ void test_loadModelReturnsCorrectBiasDimensions(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
@ -125,12 +86,12 @@ void test_loadModelReturnsCorrectWeights(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
@ -150,12 +111,12 @@ void test_loadModelReturnsCorrectBiases(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
@ -177,7 +138,7 @@ void test_loadModelFailsOnWrongFileTag(void)
NeuralNetwork netUnderTest;
FILE *file = fopen(path, "wb");
if (file != NULL)
if(file != NULL)
{
const char *fileTag = "info2_neural_network_file_format";
@ -198,12 +159,12 @@ void test_clearModelSetsMembersToNull(void)
{
const char *path = "some__nn_test_file.info2";
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
MatrixType biasBuffer[] = {7, 8, 9};
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
Layer layers[] = {{.weights = weights, .biases = biases}};
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
Layer layers[] = {{.weights=weights, .biases=biases}};
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
NeuralNetwork netUnderTest;
prepareNeuralNetworkFile(path, expectedNet);
@ -220,7 +181,7 @@ void test_clearModelSetsMembersToNull(void)
static void someActivation(Matrix *matrix)
{
for (int i = 0; i < matrix->rows * matrix->cols; i++)
for(int i = 0; i < matrix->rows * matrix->cols; i++)
{
matrix->buffer[i] = fabs(matrix->buffer[i]);
}
@ -231,23 +192,23 @@ void test_predictReturnsCorrectLabels(void)
const unsigned char expectedLabels[] = {4, 2};
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
GrayScaleImage inputImages[] = {{.buffer = imageBuffer1, .width = 2, .height = 2}, {.buffer = imageBuffer2, .width = 2, .height = 2}};
GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}};
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
Matrix weights1 = {.buffer = weightsBuffer1, .rows = 2, .cols = 4};
Matrix weights2 = {.buffer = weightsBuffer2, .rows = 3, .cols = 2};
Matrix weights3 = {.buffer = weightsBuffer3, .rows = 5, .cols = 3};
Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4};
Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2};
Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3};
MatrixType biasBuffer1[] = {200, 0};
MatrixType biasBuffer2[] = {0, -100, 0};
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
Matrix biases1 = {.buffer = biasBuffer1, .rows = 2, .cols = 1};
Matrix biases2 = {.buffer = biasBuffer2, .rows = 3, .cols = 1};
Matrix biases3 = {.buffer = biasBuffer3, .rows = 5, .cols = 1};
Layer layers[] = {{.weights = weights1, .biases = biases1, .activation = someActivation},
{.weights = weights2, .biases = biases2, .activation = someActivation},
{.weights = weights3, .biases = biases3, .activation = someActivation}};
NeuralNetwork netUnderTest = {.layers = layers, .numberOfLayers = 3};
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
{.weights=weights2, .biases=biases2, .activation=someActivation}, \
{.weights=weights3, .biases=biases3, .activation=someActivation}};
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
TEST_ASSERT_NOT_NULL(predictedLabels);
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
@ -255,13 +216,11 @@ void test_predictReturnsCorrectLabels(void)
free(predictedLabels);
}
void setUp(void)
{
void setUp(void) {
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
}
void tearDown(void)
{
void tearDown(void) {
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
}