Compare commits
3 Commits
neuralNetw
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1b8b8f9427 | ||
|
|
efd8113350 | ||
|
|
1fca7598d6 |
5
.vscode/settings.json
vendored
5
.vscode/settings.json
vendored
@ -1,5 +0,0 @@
|
||||
{
|
||||
"files.associations": {
|
||||
"unity.h": "c"
|
||||
}
|
||||
}
|
||||
@ -33,6 +33,7 @@ GrayScaleImageSeries *readImages(const char *path)
|
||||
return NULL;
|
||||
}
|
||||
//liest die Anzahl der Bilder aus
|
||||
series->count = 0;
|
||||
fread(&series->count, sizeof(unsigned short),1, data);
|
||||
series->images = malloc(series->count * sizeof(GrayScaleImage));
|
||||
if (series->images == NULL){
|
||||
|
||||
@ -123,7 +123,8 @@ void setUp(void) {
|
||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||
}
|
||||
|
||||
void tearDown(void) {
|
||||
void tearDown(void)
|
||||
{
|
||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||
}
|
||||
|
||||
|
||||
@ -5,30 +5,27 @@
|
||||
#include "unity.h"
|
||||
#include "neuralNetwork.h"
|
||||
|
||||
|
||||
static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||
{
|
||||
// TODO : Fehlerbehandlung
|
||||
// Öffne die Datei zum Schreiben im Binärmodus
|
||||
FILE *file = fopen(path, "wb");
|
||||
if (!file) return;
|
||||
FILE *file = fopen(path, "wb");
|
||||
if (!file)
|
||||
return;
|
||||
|
||||
// Schreibe den Datei-Tag
|
||||
const char *tag = "__info2_neural_network_file_format__";
|
||||
fwrite(tag, 1, strlen(tag), file);
|
||||
|
||||
// Überprüfe, ob Layer vorhanden sind
|
||||
if (nn.numberOfLayers == 0)
|
||||
// Überprüfung, ob es Layer gibt
|
||||
if (nn.numberOfLayers == 0)
|
||||
{
|
||||
fclose(file);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Schreibe die Eingabe- und Ausgabegrößen des Netzwerks
|
||||
int input = nn.layers[0].weights.cols;
|
||||
int input = nn.layers[0].weights.cols;
|
||||
int output = nn.layers[0].weights.rows;
|
||||
|
||||
fwrite(&input, sizeof(int), 1, file);
|
||||
fwrite(&input, sizeof(int), 1, file);
|
||||
fwrite(&output, sizeof(int), 1, file);
|
||||
|
||||
// Schreibe die Layer-Daten
|
||||
@ -36,11 +33,10 @@ static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||
{
|
||||
const Layer *layer = &nn.layers[i];
|
||||
int out = layer->weights.rows;
|
||||
int in = layer->weights.cols;
|
||||
int in = layer->weights.cols;
|
||||
|
||||
fwrite(layer->weights.buffer, sizeof(MatrixType), out * in, file);
|
||||
|
||||
|
||||
fwrite(layer->biases.buffer, sizeof(MatrixType), out * 1, file);
|
||||
|
||||
if (i + 1 < nn.numberOfLayers)
|
||||
@ -49,11 +45,9 @@ static void prepareNeuralNetworkFile(const char *path, const NeuralNetwork nn)
|
||||
fwrite(&nextOut, sizeof(int), 1, file);
|
||||
}
|
||||
}
|
||||
|
||||
fclose(file);
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||
@ -61,15 +55,15 @@ void test_loadModelReturnsCorrectNumberOfLayers(void)
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType buffer1[] = {1, 2, 3, 4, 5, 6};
|
||||
MatrixType buffer2[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights1 = {.buffer=buffer1, .rows=3, .cols=2};
|
||||
Matrix weights2 = {.buffer=buffer2, .rows=2, .cols=3};
|
||||
Matrix weights1 = {.buffer = buffer1, .rows = 3, .cols = 2};
|
||||
Matrix weights2 = {.buffer = buffer2, .rows = 2, .cols = 3};
|
||||
MatrixType buffer3[] = {1, 2, 3};
|
||||
MatrixType buffer4[] = {1, 2};
|
||||
Matrix biases1 = {.buffer=buffer3, .rows=3, .cols=1};
|
||||
Matrix biases2 = {.buffer=buffer4, .rows=2, .cols=1};
|
||||
Layer layers[] = {{.weights=weights1, .biases=biases1}, {.weights=weights2, .biases=biases2}};
|
||||
Matrix biases1 = {.buffer = buffer3, .rows = 3, .cols = 1};
|
||||
Matrix biases2 = {.buffer = buffer4, .rows = 2, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights1, .biases = biases1}, {.weights = weights2, .biases = biases2}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=2};
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 2};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
@ -85,12 +79,12 @@ void test_loadModelReturnsCorrectWeightDimensions(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
@ -108,12 +102,12 @@ void test_loadModelReturnsCorrectBiasDimensions(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
@ -131,12 +125,12 @@ void test_loadModelReturnsCorrectWeights(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
@ -156,12 +150,12 @@ void test_loadModelReturnsCorrectBiases(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
@ -183,7 +177,7 @@ void test_loadModelFailsOnWrongFileTag(void)
|
||||
NeuralNetwork netUnderTest;
|
||||
FILE *file = fopen(path, "wb");
|
||||
|
||||
if(file != NULL)
|
||||
if (file != NULL)
|
||||
{
|
||||
const char *fileTag = "info2_neural_network_file_format";
|
||||
|
||||
@ -204,12 +198,12 @@ void test_clearModelSetsMembersToNull(void)
|
||||
{
|
||||
const char *path = "some__nn_test_file.info2";
|
||||
MatrixType weightBuffer[] = {1, 2, 3, 4, 5, 6};
|
||||
Matrix weights = {.buffer=weightBuffer, .rows=3, .cols=2};
|
||||
Matrix weights = {.buffer = weightBuffer, .rows = 3, .cols = 2};
|
||||
MatrixType biasBuffer[] = {7, 8, 9};
|
||||
Matrix biases = {.buffer=biasBuffer, .rows=3, .cols=1};
|
||||
Layer layers[] = {{.weights=weights, .biases=biases}};
|
||||
Matrix biases = {.buffer = biasBuffer, .rows = 3, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights, .biases = biases}};
|
||||
|
||||
NeuralNetwork expectedNet = {.layers=layers, .numberOfLayers=1};
|
||||
NeuralNetwork expectedNet = {.layers = layers, .numberOfLayers = 1};
|
||||
NeuralNetwork netUnderTest;
|
||||
|
||||
prepareNeuralNetworkFile(path, expectedNet);
|
||||
@ -226,7 +220,7 @@ void test_clearModelSetsMembersToNull(void)
|
||||
|
||||
static void someActivation(Matrix *matrix)
|
||||
{
|
||||
for(int i = 0; i < matrix->rows * matrix->cols; i++)
|
||||
for (int i = 0; i < matrix->rows * matrix->cols; i++)
|
||||
{
|
||||
matrix->buffer[i] = fabs(matrix->buffer[i]);
|
||||
}
|
||||
@ -237,23 +231,23 @@ void test_predictReturnsCorrectLabels(void)
|
||||
const unsigned char expectedLabels[] = {4, 2};
|
||||
GrayScalePixelType imageBuffer1[] = {10, 30, 25, 17};
|
||||
GrayScalePixelType imageBuffer2[] = {20, 40, 10, 128};
|
||||
GrayScaleImage inputImages[] = {{.buffer=imageBuffer1, .width=2, .height=2}, {.buffer=imageBuffer2, .width=2, .height=2}};
|
||||
GrayScaleImage inputImages[] = {{.buffer = imageBuffer1, .width = 2, .height = 2}, {.buffer = imageBuffer2, .width = 2, .height = 2}};
|
||||
MatrixType weightsBuffer1[] = {1, -2, 3, -4, 5, -6, 7, -8};
|
||||
MatrixType weightsBuffer2[] = {-9, 10, 11, 12, 13, 14};
|
||||
MatrixType weightsBuffer3[] = {-15, 16, 17, 18, -19, 20, 21, 22, 23, -24, 25, 26, 27, -28, -29};
|
||||
Matrix weights1 = {.buffer=weightsBuffer1, .rows=2, .cols=4};
|
||||
Matrix weights2 = {.buffer=weightsBuffer2, .rows=3, .cols=2};
|
||||
Matrix weights3 = {.buffer=weightsBuffer3, .rows=5, .cols=3};
|
||||
Matrix weights1 = {.buffer = weightsBuffer1, .rows = 2, .cols = 4};
|
||||
Matrix weights2 = {.buffer = weightsBuffer2, .rows = 3, .cols = 2};
|
||||
Matrix weights3 = {.buffer = weightsBuffer3, .rows = 5, .cols = 3};
|
||||
MatrixType biasBuffer1[] = {200, 0};
|
||||
MatrixType biasBuffer2[] = {0, -100, 0};
|
||||
MatrixType biasBuffer3[] = {0, -1000, 0, 2000, 0};
|
||||
Matrix biases1 = {.buffer=biasBuffer1, .rows=2, .cols=1};
|
||||
Matrix biases2 = {.buffer=biasBuffer2, .rows=3, .cols=1};
|
||||
Matrix biases3 = {.buffer=biasBuffer3, .rows=5, .cols=1};
|
||||
Layer layers[] = {{.weights=weights1, .biases=biases1, .activation=someActivation}, \
|
||||
{.weights=weights2, .biases=biases2, .activation=someActivation}, \
|
||||
{.weights=weights3, .biases=biases3, .activation=someActivation}};
|
||||
NeuralNetwork netUnderTest = {.layers=layers, .numberOfLayers=3};
|
||||
Matrix biases1 = {.buffer = biasBuffer1, .rows = 2, .cols = 1};
|
||||
Matrix biases2 = {.buffer = biasBuffer2, .rows = 3, .cols = 1};
|
||||
Matrix biases3 = {.buffer = biasBuffer3, .rows = 5, .cols = 1};
|
||||
Layer layers[] = {{.weights = weights1, .biases = biases1, .activation = someActivation},
|
||||
{.weights = weights2, .biases = biases2, .activation = someActivation},
|
||||
{.weights = weights3, .biases = biases3, .activation = someActivation}};
|
||||
NeuralNetwork netUnderTest = {.layers = layers, .numberOfLayers = 3};
|
||||
unsigned char *predictedLabels = predict(netUnderTest, inputImages, 2);
|
||||
TEST_ASSERT_NOT_NULL(predictedLabels);
|
||||
int n = (int)(sizeof(expectedLabels) / sizeof(expectedLabels[0]));
|
||||
@ -261,11 +255,13 @@ void test_predictReturnsCorrectLabels(void)
|
||||
free(predictedLabels);
|
||||
}
|
||||
|
||||
void setUp(void) {
|
||||
void setUp(void)
|
||||
{
|
||||
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
|
||||
}
|
||||
|
||||
void tearDown(void) {
|
||||
void tearDown(void)
|
||||
{
|
||||
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
|
||||
}
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user