|
|
@@ -0,0 +1,86 @@ |
|
|
|
import cv2 |
|
|
|
import numpy as np |
|
|
|
import utlis |
|
|
|
import os |
|
|
|
|
|
|
|
######################################################################## |
|
|
|
webCamFeed = True |
|
|
|
pathImage = "SchachBrett2.jpg" |
|
|
|
cap = cv2.VideoCapture() |
|
|
|
#cap = cv2.VideoCapture(1) |
|
|
|
cap.set(10,160) |
|
|
|
heightImg = 640 |
|
|
|
widthImg = 480 |
|
|
|
|
|
|
|
BASE = os.path.dirname(__file__) |
|
|
|
######################################################################## |
|
|
|
|
|
|
|
utlis.initializeTrackbars() |
|
|
|
count=0 |
|
|
|
|
|
|
|
while True: |
|
|
|
img = cv2.imread(BASE+ "/"+ pathImage) |
|
|
|
img = cv2.resize(img, (widthImg, heightImg)) # RESIZE IMAGE |
|
|
|
imgBlank = np.zeros((heightImg,widthImg, 3), np.uint8) # CREATE A BLANK IMAGE FOR TESTING DEBUGING IF REQUIRED |
|
|
|
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # CONVERT IMAGE TO GRAY SCALE |
|
|
|
imgBlur = cv2.GaussianBlur(imgGray, (5, 5), 1) # ADD GAUSSIAN BLUR |
|
|
|
thres=utlis.valTrackbars() # GET TRACK BAR VALUES FOR THRESHOLDS |
|
|
|
imgThreshold = cv2.Canny(imgBlur,thres[0],thres[1]) # APPLY CANNY BLUR |
|
|
|
kernel = np.ones((5, 5)) |
|
|
|
imgDial = cv2.dilate(imgThreshold, kernel, iterations=2) # APPLY DILATION |
|
|
|
imgThreshold = cv2.erode(imgDial, kernel, iterations=1) # APPLY EROSION |
|
|
|
|
|
|
|
## FIND ALL COUNTOURS |
|
|
|
imgContours = img.copy() # COPY IMAGE FOR DISPLAY PURPOSES |
|
|
|
imgBigContour = img.copy() # COPY IMAGE FOR DISPLAY PURPOSES |
|
|
|
#contours =cv2.findChessboardCorners(img, (8,8),corners, cv2.CALIB_CB_ADAPTIVE_THRESH ) |
|
|
|
contours, hierarchy = cv2.findContours(imgThreshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # FIND ALL CONTOURS |
|
|
|
cv2.drawContours(imgContours, contours, -1, (0, 255, 0), 10) # DRAW ALL DETECTED CONTOURS |
|
|
|
|
|
|
|
|
|
|
|
# FIND THE BIGGEST COUNTOUR |
|
|
|
biggest, maxArea = utlis.biggestContour(contours) # FIND THE BIGGEST CONTOUR |
|
|
|
if biggest.size != 0: |
|
|
|
biggest=utlis.reorder(biggest) |
|
|
|
cv2.drawContours(imgBigContour, biggest, -1, (0, 255, 0), 20) # DRAW THE BIGGEST CONTOUR |
|
|
|
imgBigContour = utlis.drawRectangle(imgBigContour,biggest,2) |
|
|
|
pts1 = np.float32(biggest) # PREPARE POINTS FOR WARP |
|
|
|
pts2 = np.float32([[0, 0],[widthImg, 0], [0, heightImg],[widthImg, heightImg]]) # PREPARE POINTS FOR WARP |
|
|
|
matrix = cv2.getPerspectiveTransform(pts1, pts2) |
|
|
|
imgWarpColored = cv2.warpPerspective(img, matrix, (widthImg, heightImg)) |
|
|
|
|
|
|
|
#REMOVE 20 PIXELS FORM EACH SIDE |
|
|
|
imgWarpColored=imgWarpColored[20:imgWarpColored.shape[0] - 20, 20:imgWarpColored.shape[1] - 20] |
|
|
|
imgWarpColored = cv2.resize(imgWarpColored,(widthImg,heightImg)) |
|
|
|
|
|
|
|
# APPLY ADAPTIVE THRESHOLD |
|
|
|
imgWarpGray = cv2.cvtColor(imgWarpColored,cv2.COLOR_BGR2GRAY) |
|
|
|
imgAdaptiveThre= cv2.adaptiveThreshold(imgWarpGray, 255, 1, 1, 7, 2) |
|
|
|
imgAdaptiveThre = cv2.bitwise_not(imgAdaptiveThre) |
|
|
|
imgAdaptiveThre=cv2.medianBlur(imgAdaptiveThre,3) |
|
|
|
|
|
|
|
# Image Array for Display |
|
|
|
imageArray = ([img,imgGray,imgThreshold,imgContours], |
|
|
|
[imgBigContour,imgWarpColored, imgWarpGray,imgAdaptiveThre]) |
|
|
|
|
|
|
|
else: |
|
|
|
imageArray = ([img,imgGray,imgThreshold,imgContours], |
|
|
|
[imgBlank, imgBlank, imgBlank, imgBlank]) |
|
|
|
|
|
|
|
# LABELS FOR DISPLAY |
|
|
|
lables = [["Original","Gray","Threshold","Contours"], |
|
|
|
["Biggest Contour","Warp Prespective","Warp Gray","Adaptive Threshold"]] |
|
|
|
|
|
|
|
stackedImage = utlis.stackImages(imageArray,0.75,lables) |
|
|
|
cv2.imshow("Result",stackedImage) |
|
|
|
|
|
|
|
# SAVE IMAGE WHEN 's' key is pressed |
|
|
|
if cv2.waitKey(1) & 0xFF == ord('s'): |
|
|
|
cv2.imwrite("Scanned/myImage"+str(count)+".jpg",imgWarpColored) |
|
|
|
cv2.rectangle(stackedImage, ((int(stackedImage.shape[1] / 2) - 230), int(stackedImage.shape[0] / 2) + 50), |
|
|
|
(1100, 350), (0, 255, 0), cv2.FILLED) |
|
|
|
cv2.putText(stackedImage, "Scan Saved", (int(stackedImage.shape[1] / 2) - 200, int(stackedImage.shape[0] / 2)), |
|
|
|
cv2.FONT_HERSHEY_DUPLEX, 3, (0, 0, 255), 5, cv2.LINE_AA) |
|
|
|
cv2.imshow('Result', stackedImage) |
|
|
|
cv2.waitKey(300) |
|
|
|
count += 1 |