Dateien hochladen nach „“
This commit is contained in:
parent
bb2d5e9ff4
commit
af02743558
BIN
DOCUMENT SCANNER-1.jpg
Normal file
BIN
DOCUMENT SCANNER-1.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 130 KiB |
58
DetectChessCorners.py
Normal file
58
DetectChessCorners.py
Normal file
@ -0,0 +1,58 @@
|
|||||||
|
import numpy as np
|
||||||
|
import cv2 as cv
|
||||||
|
import glob
|
||||||
|
import os
|
||||||
|
|
||||||
|
heightImg = 800
|
||||||
|
widthImg = 1000
|
||||||
|
|
||||||
|
FieldSize = 100
|
||||||
|
|
||||||
|
BASE = os.path.dirname(__file__)
|
||||||
|
pathImage = "SchachBrett2.jpg"
|
||||||
|
# termination criteria
|
||||||
|
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
|
||||||
|
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
|
||||||
|
objp = np.zeros((7*7,3), np.float32)
|
||||||
|
|
||||||
|
objp[:,:2] = np.mgrid[0:7,0:7].T.reshape(-1,2)
|
||||||
|
# Arrays to store object points and image points from all the images.
|
||||||
|
objpoints = [] # 3d point in real world space
|
||||||
|
imgpoints = [] # 2d points in image plane.
|
||||||
|
img = cv.imread(BASE+ "/"+ pathImage) #glob.glob('*.jpg')
|
||||||
|
img = cv.resize(img, (widthImg, heightImg))
|
||||||
|
|
||||||
|
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
||||||
|
# Find the chess board corners
|
||||||
|
ret, corners = cv.findChessboardCorners(gray, (7,7), None)
|
||||||
|
# If found, add object points, image points (after refining them)
|
||||||
|
if ret == True:
|
||||||
|
#get Corner Position of the 1. Rank
|
||||||
|
#print(corners)
|
||||||
|
leftupper = corners[6][0]
|
||||||
|
leftlower = corners[48][0]
|
||||||
|
rightupper = corners[42][0]
|
||||||
|
rightlower = corners[0][0]
|
||||||
|
|
||||||
|
#Transform Image with the founded Corner Position
|
||||||
|
pts1 = np.float32([rightupper, rightlower, leftupper, leftlower]) # PREPARE POINTS FOR WARP
|
||||||
|
print(pts1)
|
||||||
|
pts2 = np.float32([[FieldSize, FieldSize*7], [FieldSize*7, FieldSize*7], [FieldSize*7, FieldSize], [FieldSize, FieldSize]]) # PREPARE POINTS FOR WARP
|
||||||
|
matrix = cv.getPerspectiveTransform(pts1, pts2)
|
||||||
|
imgWarpColored = cv.warpPerspective(img, matrix, (FieldSize*8, FieldSize*8))
|
||||||
|
|
||||||
|
#Draw founded Chess Corners
|
||||||
|
imgContours = img.copy()
|
||||||
|
objpoints.append(objp)
|
||||||
|
corners2 = cv.cornerSubPix(gray,corners, (11,11), (-1,-1), criteria)
|
||||||
|
imgpoints.append(corners)
|
||||||
|
# Draw and display the corners
|
||||||
|
cv.drawChessboardCorners(img, (7,7), corners2, ret)
|
||||||
|
|
||||||
|
else:
|
||||||
|
ret, corners = cv.findChessboardCorners(gray, (5, 5), None)
|
||||||
|
|
||||||
|
#cv.imshow('img', img)
|
||||||
|
cv.imshow('img', imgWarpColored)
|
||||||
|
|
||||||
|
cv.waitKey(500000)
|
86
DocumentScannerMain.py
Normal file
86
DocumentScannerMain.py
Normal file
@ -0,0 +1,86 @@
|
|||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import utlis
|
||||||
|
import os
|
||||||
|
|
||||||
|
########################################################################
|
||||||
|
webCamFeed = True
|
||||||
|
pathImage = "SchachBrett2.jpg"
|
||||||
|
cap = cv2.VideoCapture()
|
||||||
|
#cap = cv2.VideoCapture(1)
|
||||||
|
cap.set(10,160)
|
||||||
|
heightImg = 640
|
||||||
|
widthImg = 480
|
||||||
|
|
||||||
|
BASE = os.path.dirname(__file__)
|
||||||
|
########################################################################
|
||||||
|
|
||||||
|
utlis.initializeTrackbars()
|
||||||
|
count=0
|
||||||
|
|
||||||
|
while True:
|
||||||
|
img = cv2.imread(BASE+ "/"+ pathImage)
|
||||||
|
img = cv2.resize(img, (widthImg, heightImg)) # RESIZE IMAGE
|
||||||
|
imgBlank = np.zeros((heightImg,widthImg, 3), np.uint8) # CREATE A BLANK IMAGE FOR TESTING DEBUGING IF REQUIRED
|
||||||
|
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # CONVERT IMAGE TO GRAY SCALE
|
||||||
|
imgBlur = cv2.GaussianBlur(imgGray, (5, 5), 1) # ADD GAUSSIAN BLUR
|
||||||
|
thres=utlis.valTrackbars() # GET TRACK BAR VALUES FOR THRESHOLDS
|
||||||
|
imgThreshold = cv2.Canny(imgBlur,thres[0],thres[1]) # APPLY CANNY BLUR
|
||||||
|
kernel = np.ones((5, 5))
|
||||||
|
imgDial = cv2.dilate(imgThreshold, kernel, iterations=2) # APPLY DILATION
|
||||||
|
imgThreshold = cv2.erode(imgDial, kernel, iterations=1) # APPLY EROSION
|
||||||
|
|
||||||
|
## FIND ALL COUNTOURS
|
||||||
|
imgContours = img.copy() # COPY IMAGE FOR DISPLAY PURPOSES
|
||||||
|
imgBigContour = img.copy() # COPY IMAGE FOR DISPLAY PURPOSES
|
||||||
|
#contours =cv2.findChessboardCorners(img, (8,8),corners, cv2.CALIB_CB_ADAPTIVE_THRESH )
|
||||||
|
contours, hierarchy = cv2.findContours(imgThreshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # FIND ALL CONTOURS
|
||||||
|
cv2.drawContours(imgContours, contours, -1, (0, 255, 0), 10) # DRAW ALL DETECTED CONTOURS
|
||||||
|
|
||||||
|
|
||||||
|
# FIND THE BIGGEST COUNTOUR
|
||||||
|
biggest, maxArea = utlis.biggestContour(contours) # FIND THE BIGGEST CONTOUR
|
||||||
|
if biggest.size != 0:
|
||||||
|
biggest=utlis.reorder(biggest)
|
||||||
|
cv2.drawContours(imgBigContour, biggest, -1, (0, 255, 0), 20) # DRAW THE BIGGEST CONTOUR
|
||||||
|
imgBigContour = utlis.drawRectangle(imgBigContour,biggest,2)
|
||||||
|
pts1 = np.float32(biggest) # PREPARE POINTS FOR WARP
|
||||||
|
pts2 = np.float32([[0, 0],[widthImg, 0], [0, heightImg],[widthImg, heightImg]]) # PREPARE POINTS FOR WARP
|
||||||
|
matrix = cv2.getPerspectiveTransform(pts1, pts2)
|
||||||
|
imgWarpColored = cv2.warpPerspective(img, matrix, (widthImg, heightImg))
|
||||||
|
|
||||||
|
#REMOVE 20 PIXELS FORM EACH SIDE
|
||||||
|
imgWarpColored=imgWarpColored[20:imgWarpColored.shape[0] - 20, 20:imgWarpColored.shape[1] - 20]
|
||||||
|
imgWarpColored = cv2.resize(imgWarpColored,(widthImg,heightImg))
|
||||||
|
|
||||||
|
# APPLY ADAPTIVE THRESHOLD
|
||||||
|
imgWarpGray = cv2.cvtColor(imgWarpColored,cv2.COLOR_BGR2GRAY)
|
||||||
|
imgAdaptiveThre= cv2.adaptiveThreshold(imgWarpGray, 255, 1, 1, 7, 2)
|
||||||
|
imgAdaptiveThre = cv2.bitwise_not(imgAdaptiveThre)
|
||||||
|
imgAdaptiveThre=cv2.medianBlur(imgAdaptiveThre,3)
|
||||||
|
|
||||||
|
# Image Array for Display
|
||||||
|
imageArray = ([img,imgGray,imgThreshold,imgContours],
|
||||||
|
[imgBigContour,imgWarpColored, imgWarpGray,imgAdaptiveThre])
|
||||||
|
|
||||||
|
else:
|
||||||
|
imageArray = ([img,imgGray,imgThreshold,imgContours],
|
||||||
|
[imgBlank, imgBlank, imgBlank, imgBlank])
|
||||||
|
|
||||||
|
# LABELS FOR DISPLAY
|
||||||
|
lables = [["Original","Gray","Threshold","Contours"],
|
||||||
|
["Biggest Contour","Warp Prespective","Warp Gray","Adaptive Threshold"]]
|
||||||
|
|
||||||
|
stackedImage = utlis.stackImages(imageArray,0.75,lables)
|
||||||
|
cv2.imshow("Result",stackedImage)
|
||||||
|
|
||||||
|
# SAVE IMAGE WHEN 's' key is pressed
|
||||||
|
if cv2.waitKey(1) & 0xFF == ord('s'):
|
||||||
|
cv2.imwrite("Scanned/myImage"+str(count)+".jpg",imgWarpColored)
|
||||||
|
cv2.rectangle(stackedImage, ((int(stackedImage.shape[1] / 2) - 230), int(stackedImage.shape[0] / 2) + 50),
|
||||||
|
(1100, 350), (0, 255, 0), cv2.FILLED)
|
||||||
|
cv2.putText(stackedImage, "Scan Saved", (int(stackedImage.shape[1] / 2) - 200, int(stackedImage.shape[0] / 2)),
|
||||||
|
cv2.FONT_HERSHEY_DUPLEX, 3, (0, 0, 255), 5, cv2.LINE_AA)
|
||||||
|
cv2.imshow('Result', stackedImage)
|
||||||
|
cv2.waitKey(300)
|
||||||
|
count += 1
|
BIN
Documnet Scanner.jpg
Normal file
BIN
Documnet Scanner.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 138 KiB |
Loading…
x
Reference in New Issue
Block a user