import cv2 import numpy as np import utlis import os ######################################################################## webCamFeed = True pathImage = "SchachBrett2.jpg" cap = cv2.VideoCapture() #cap = cv2.VideoCapture(1) cap.set(10,160) heightImg = 640 widthImg = 480 BASE = os.path.dirname(__file__) ######################################################################## utlis.initializeTrackbars() count=0 while True: img = cv2.imread(BASE+ "/"+ pathImage) img = cv2.resize(img, (widthImg, heightImg)) # RESIZE IMAGE imgBlank = np.zeros((heightImg,widthImg, 3), np.uint8) # CREATE A BLANK IMAGE FOR TESTING DEBUGING IF REQUIRED imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # CONVERT IMAGE TO GRAY SCALE imgBlur = cv2.GaussianBlur(imgGray, (5, 5), 1) # ADD GAUSSIAN BLUR thres=utlis.valTrackbars() # GET TRACK BAR VALUES FOR THRESHOLDS imgThreshold = cv2.Canny(imgBlur,thres[0],thres[1]) # APPLY CANNY BLUR kernel = np.ones((5, 5)) imgDial = cv2.dilate(imgThreshold, kernel, iterations=2) # APPLY DILATION imgThreshold = cv2.erode(imgDial, kernel, iterations=1) # APPLY EROSION ## FIND ALL COUNTOURS imgContours = img.copy() # COPY IMAGE FOR DISPLAY PURPOSES imgBigContour = img.copy() # COPY IMAGE FOR DISPLAY PURPOSES #contours =cv2.findChessboardCorners(img, (8,8),corners, cv2.CALIB_CB_ADAPTIVE_THRESH ) contours, hierarchy = cv2.findContours(imgThreshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # FIND ALL CONTOURS cv2.drawContours(imgContours, contours, -1, (0, 255, 0), 10) # DRAW ALL DETECTED CONTOURS # FIND THE BIGGEST COUNTOUR biggest, maxArea = utlis.biggestContour(contours) # FIND THE BIGGEST CONTOUR if biggest.size != 0: biggest=utlis.reorder(biggest) cv2.drawContours(imgBigContour, biggest, -1, (0, 255, 0), 20) # DRAW THE BIGGEST CONTOUR imgBigContour = utlis.drawRectangle(imgBigContour,biggest,2) pts1 = np.float32(biggest) # PREPARE POINTS FOR WARP pts2 = np.float32([[0, 0],[widthImg, 0], [0, heightImg],[widthImg, heightImg]]) # PREPARE POINTS FOR WARP matrix = cv2.getPerspectiveTransform(pts1, pts2) imgWarpColored = cv2.warpPerspective(img, matrix, (widthImg, heightImg)) #REMOVE 20 PIXELS FORM EACH SIDE imgWarpColored=imgWarpColored[20:imgWarpColored.shape[0] - 20, 20:imgWarpColored.shape[1] - 20] imgWarpColored = cv2.resize(imgWarpColored,(widthImg,heightImg)) # APPLY ADAPTIVE THRESHOLD imgWarpGray = cv2.cvtColor(imgWarpColored,cv2.COLOR_BGR2GRAY) imgAdaptiveThre= cv2.adaptiveThreshold(imgWarpGray, 255, 1, 1, 7, 2) imgAdaptiveThre = cv2.bitwise_not(imgAdaptiveThre) imgAdaptiveThre=cv2.medianBlur(imgAdaptiveThre,3) # Image Array for Display imageArray = ([img,imgGray,imgThreshold,imgContours], [imgBigContour,imgWarpColored, imgWarpGray,imgAdaptiveThre]) else: imageArray = ([img,imgGray,imgThreshold,imgContours], [imgBlank, imgBlank, imgBlank, imgBlank]) # LABELS FOR DISPLAY lables = [["Original","Gray","Threshold","Contours"], ["Biggest Contour","Warp Prespective","Warp Gray","Adaptive Threshold"]] stackedImage = utlis.stackImages(imageArray,0.75,lables) cv2.imshow("Result",stackedImage) # SAVE IMAGE WHEN 's' key is pressed if cv2.waitKey(1) & 0xFF == ord('s'): cv2.imwrite("Scanned/myImage"+str(count)+".jpg",imgWarpColored) cv2.rectangle(stackedImage, ((int(stackedImage.shape[1] / 2) - 230), int(stackedImage.shape[0] / 2) + 50), (1100, 350), (0, 255, 0), cv2.FILLED) cv2.putText(stackedImage, "Scan Saved", (int(stackedImage.shape[1] / 2) - 200, int(stackedImage.shape[0] / 2)), cv2.FONT_HERSHEY_DUPLEX, 3, (0, 0, 255), 5, cv2.LINE_AA) cv2.imshow('Result', stackedImage) cv2.waitKey(300) count += 1