Schach_Stellung_erkennen/DocumentScannerMain.py

87 lines
3.9 KiB
Python

import cv2
import numpy as np
import utlis
import os
########################################################################
webCamFeed = True
pathImage = "SchachBrett2.jpg"
cap = cv2.VideoCapture()
#cap = cv2.VideoCapture(1)
cap.set(10,160)
heightImg = 640
widthImg = 480
BASE = os.path.dirname(__file__)
########################################################################
utlis.initializeTrackbars()
count=0
while True:
img = cv2.imread(BASE+ "/"+ pathImage)
img = cv2.resize(img, (widthImg, heightImg)) # RESIZE IMAGE
imgBlank = np.zeros((heightImg,widthImg, 3), np.uint8) # CREATE A BLANK IMAGE FOR TESTING DEBUGING IF REQUIRED
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # CONVERT IMAGE TO GRAY SCALE
imgBlur = cv2.GaussianBlur(imgGray, (5, 5), 1) # ADD GAUSSIAN BLUR
thres=utlis.valTrackbars() # GET TRACK BAR VALUES FOR THRESHOLDS
imgThreshold = cv2.Canny(imgBlur,thres[0],thres[1]) # APPLY CANNY BLUR
kernel = np.ones((5, 5))
imgDial = cv2.dilate(imgThreshold, kernel, iterations=2) # APPLY DILATION
imgThreshold = cv2.erode(imgDial, kernel, iterations=1) # APPLY EROSION
## FIND ALL COUNTOURS
imgContours = img.copy() # COPY IMAGE FOR DISPLAY PURPOSES
imgBigContour = img.copy() # COPY IMAGE FOR DISPLAY PURPOSES
#contours =cv2.findChessboardCorners(img, (8,8),corners, cv2.CALIB_CB_ADAPTIVE_THRESH )
contours, hierarchy = cv2.findContours(imgThreshold, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # FIND ALL CONTOURS
cv2.drawContours(imgContours, contours, -1, (0, 255, 0), 10) # DRAW ALL DETECTED CONTOURS
# FIND THE BIGGEST COUNTOUR
biggest, maxArea = utlis.biggestContour(contours) # FIND THE BIGGEST CONTOUR
if biggest.size != 0:
biggest=utlis.reorder(biggest)
cv2.drawContours(imgBigContour, biggest, -1, (0, 255, 0), 20) # DRAW THE BIGGEST CONTOUR
imgBigContour = utlis.drawRectangle(imgBigContour,biggest,2)
pts1 = np.float32(biggest) # PREPARE POINTS FOR WARP
pts2 = np.float32([[0, 0],[widthImg, 0], [0, heightImg],[widthImg, heightImg]]) # PREPARE POINTS FOR WARP
matrix = cv2.getPerspectiveTransform(pts1, pts2)
imgWarpColored = cv2.warpPerspective(img, matrix, (widthImg, heightImg))
#REMOVE 20 PIXELS FORM EACH SIDE
imgWarpColored=imgWarpColored[20:imgWarpColored.shape[0] - 20, 20:imgWarpColored.shape[1] - 20]
imgWarpColored = cv2.resize(imgWarpColored,(widthImg,heightImg))
# APPLY ADAPTIVE THRESHOLD
imgWarpGray = cv2.cvtColor(imgWarpColored,cv2.COLOR_BGR2GRAY)
imgAdaptiveThre= cv2.adaptiveThreshold(imgWarpGray, 255, 1, 1, 7, 2)
imgAdaptiveThre = cv2.bitwise_not(imgAdaptiveThre)
imgAdaptiveThre=cv2.medianBlur(imgAdaptiveThre,3)
# Image Array for Display
imageArray = ([img,imgGray,imgThreshold,imgContours],
[imgBigContour,imgWarpColored, imgWarpGray,imgAdaptiveThre])
else:
imageArray = ([img,imgGray,imgThreshold,imgContours],
[imgBlank, imgBlank, imgBlank, imgBlank])
# LABELS FOR DISPLAY
lables = [["Original","Gray","Threshold","Contours"],
["Biggest Contour","Warp Prespective","Warp Gray","Adaptive Threshold"]]
stackedImage = utlis.stackImages(imageArray,0.75,lables)
cv2.imshow("Result",stackedImage)
# SAVE IMAGE WHEN 's' key is pressed
if cv2.waitKey(1) & 0xFF == ord('s'):
cv2.imwrite("Scanned/myImage"+str(count)+".jpg",imgWarpColored)
cv2.rectangle(stackedImage, ((int(stackedImage.shape[1] / 2) - 230), int(stackedImage.shape[0] / 2) + 50),
(1100, 350), (0, 255, 0), cv2.FILLED)
cv2.putText(stackedImage, "Scan Saved", (int(stackedImage.shape[1] / 2) - 200, int(stackedImage.shape[0] / 2)),
cv2.FONT_HERSHEY_DUPLEX, 3, (0, 0, 255), 5, cv2.LINE_AA)
cv2.imshow('Result', stackedImage)
cv2.waitKey(300)
count += 1