This commit is contained in:
Simon 2025-12-10 12:00:39 +01:00
parent 6b3294d40b
commit 5900d759bd
9 changed files with 272 additions and 78 deletions

View File

@ -1,8 +1,10 @@
#include <string.h>
#include <stdio.h>
#include "stack.h"
#include "bintree.h"
static StackNode *stack;
static TreeNode *tree = NULL;
// TODO: binären Suchbaum implementieren
/* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv),
* `clearTree`: gibt den gesamten Baum frei (rekursiv),
@ -17,19 +19,29 @@ TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFc
{
TreeNode *newNode = malloc(sizeof(TreeNode));
newNode->data = malloc(dataSize);
newNode->data = data;
memcpy(newNode->data, data, dataSize);
newNode->left = NULL;
newNode->right = NULL;
return newNode;
}
if (compareFct(root->data, data) < 0)
int cmp = compareFct(root->data, data);
if (cmp < 0)
{
root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate);
}
else if (compareFct(root->data, data) > 0)
else if (cmp > 0)
{
root->right = addToTree(root->right, data, dataSize, compareFct, isDuplicate);
}
else
{
if (isDuplicate != NULL)
{
*isDuplicate = 1; // Mark as duplicate if needed.
}
}
return root;
}
@ -38,11 +50,24 @@ TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFc
// push the top node and push all its left nodes.
void *nextTreeData(TreeNode *root)
{
if (root != NULL)
{
clearStack(stack);
buildStack(root);
}
if(stack != NULL)
{
void* data = top(stack);
stack = pop(stack);
return data;
}
return NULL;
}
// Releases all memory resources (including data copies).
void clearTree(TreeNode *root)
{
@ -70,4 +95,17 @@ void clearTree(TreeNode *root)
unsigned int treeSize(const TreeNode *root)
{
return root == NULL ? 0 : treeSize(root->left) + treeSize(root->right) + 1;
}
}
void buildStack(TreeNode *root)
{
if (root == NULL)
{
return;
}
buildStack(root->left); // biggest first
stack = push(stack, root->data); // push
buildStack(root->right);
}

View File

@ -24,4 +24,6 @@ void clearTree(TreeNode *root);
// Returns the number of entries in the tree given by root.
unsigned int treeSize(const TreeNode *root);
void buildStack(TreeNode *root);
#endif

View File

@ -79,6 +79,8 @@ int addHighscore(const char *name, double timeInSeconds, unsigned int len)
{
HighscoreEntry entry = createHighscoreEntry(name, calculateScore(timeInSeconds, len));
highscoreTree = addToTree(highscoreTree, &entry, sizeof(entry), compareHighscoreEntries, NULL);
//HighscoreEntry *temp = highscoreTree->data;
//printf("%s%d\n", temp->name, temp->score);
return entry.score;
}

View File

@ -0,0 +1,5 @@
nick;9963
nick;9946
simon;4965
alex;2996
simon;2996

View File

@ -35,7 +35,7 @@ $(program_obj_filesobj_files): %.o: %.c
# --------------------------
# Unit Tests
# --------------------------
unitTests: stack.o test_stack.c $(unityfolder)/unity.c
stackTests: stack.o test_stack.c $(unityfolder)/unity.c
$(CC) $(FLAGS) -I$(unityfolder) -o runStackTest test_stack.c stack.o $(unityfolder)/unity.c
# --------------------------

62
stack.c
View File

@ -10,46 +10,24 @@
// Pushes data as pointer onto the stack.
StackNode *push(StackNode *stack, void *data)
{
StackNode *tempNode, *newNode;
newNode = malloc(sizeof(StackNode));
newNode->value = data;
newNode->next = NULL;
if (stack == NULL)
{
stack = newNode;
return stack;
}
tempNode = stack;
while (tempNode->next != NULL)
{
tempNode = tempNode->next;
}
tempNode->next = newNode;
return stack;
StackNode *newNode = malloc(sizeof(StackNode));
newNode->data = data;
newNode->next = stack; // Set the new node's next pointer to the current top of the stack.
return newNode; // Return the new node as the top of the stack.
}
// Deletes the top element of the stack (latest added element) and releases its memory. (Pointer to data has to be
// freed by caller.)
StackNode *pop(StackNode *stack)
{
StackNode *tempNode;
if (stack == NULL)
{
return stack;
return NULL; // Nothing to pop if stack is empty.
}
tempNode = stack;
while (tempNode->next->next != NULL)
{
tempNode = tempNode->next;
}
free(tempNode->next);
tempNode->next = NULL;
StackNode *tempNode = stack;
stack = stack->next; // Move the stack pointer to the next node.
free(tempNode); // Free the old top node.
return stack;
}
@ -57,35 +35,19 @@ StackNode *pop(StackNode *stack)
// Returns the data of the top element.
void *top(StackNode *stack)
{
StackNode *tempNode;
if (stack == NULL)
{
return NULL;
return NULL; // Return NULL if stack is empty.
}
tempNode = stack;
while (tempNode->next != NULL)
{
tempNode = tempNode->next;
}
return &tempNode->value;
return stack->data; // Return the value of the top node.
}
// Clears stack and releases all memory.
void clearStack(StackNode *stack)
{
StackNode *tempNode;
if (stack == NULL)
while (stack != NULL)
{
return;
}
tempNode = stack;
while (tempNode != NULL)
{
tempNode = pop(tempNode);
stack = pop(stack); // Pop each element and free memory.
}
}

View File

@ -9,7 +9,7 @@ The latest element is taken from the stack. */
//TODO: passenden Datentyp als struct anlegen
typedef struct Node {
void *value;
void *data;
struct Node* next;
} StackNode;

100
stackTest.c Normal file
View File

@ -0,0 +1,100 @@
#include "unity.h"
#include "stack.h" // Stack-Header-Datei
#include <stdlib.h>
// Test Setup and Teardown Functions
void setUp(void) {
// Setup code (falls notwendig, wie Initialisierungen)
}
void tearDown(void) {
// Cleanup code (falls notwendig)
}
// Test for push operation
void test_push(void) {
StackNode *stack = NULL;
int data1 = 10, data2 = 20;
// Push elements to the stack
stack = push(stack, &data1);
stack = push(stack, &data2);
// Check if the stack is not empty
TEST_ASSERT_NOT_NULL(stack);
// Check if the top element is correct
int *topData = top(stack);
TEST_ASSERT_EQUAL_INT(20, *topData); // The last pushed element should be on top
}
// Test for pop operation
void test_pop(void) {
StackNode *stack = NULL;
int data1 = 10, data2 = 20;
// Push elements to the stack
stack = push(stack, &data1);
stack = push(stack, &data2);
// Pop the top element
stack = pop(stack);
// Check if the top element is now the first pushed element
int *topData = top(stack);
TEST_ASSERT_EQUAL_INT(10, *topData); // After popping, the first element should be on top
// Pop the last element
stack = pop(stack);
// Check if the stack is empty now
TEST_ASSERT_NULL(stack); // Stack should be NULL now
}
// Test for top operation
void test_top(void) {
StackNode *stack = NULL;
int data1 = 10, data2 = 20;
// Push elements to the stack
stack = push(stack, &data1);
stack = push(stack, &data2);
// Check the top element
int *topData = top(stack);
TEST_ASSERT_EQUAL_INT(20, *topData); // The top element should be 20 (last pushed)
// Pop the top element and check the new top
stack = pop(stack);
topData = top(stack);
TEST_ASSERT_EQUAL_INT(10, *topData); // Now the top element should be 10
}
// Test for clearStack operation
void test_clearStack(void) {
StackNode *stack = NULL;
int data1 = 10, data2 = 20;
// Push elements to the stack
stack = push(stack, &data1);
stack = push(stack, &data2);
// Clear the stack
clearStack(stack);
// The stack should be empty now
TEST_ASSERT_NULL(stack); // Stack should be NULL
}
// Run all tests
int main(void) {
UNITY_BEGIN();
// Run the individual test functions
RUN_TEST(test_push);
RUN_TEST(test_pop);
RUN_TEST(test_top);
RUN_TEST(test_clearStack);
return UNITY_END();
}

View File

@ -3,16 +3,33 @@
#include "stack.h"
#include "unity.h"
void test_push(void)
void test_push(void) {
StackNode *stack = NULL;
int data1 = 10, data2 = 20;
// Push elements to the stack
stack = push(stack, &data1);
stack = push(stack, &data2);
// Check if the stack is not empty
TEST_ASSERT_NOT_NULL(stack);
// Check if the top element is correct
int *topData = top(stack);
TEST_ASSERT_EQUAL_INT(20, *topData); // The last pushed element should be on top
}
void test_push1(void)
{
StackNode *testNode;
StackNode *testNode = NULL;
int data = 1;
// Test für leeren Stack
testNode = push(NULL, &data);
testNode = push(testNode, &data);
TEST_ASSERT_NOT_NULL(&testNode);
TEST_ASSERT_NULL(testNode->next);
TEST_ASSERT_EQUAL_INT(1, testNode->value);
int *temp = testNode->data;
TEST_ASSERT_EQUAL_INT(1, *temp);
data = 2;
@ -21,26 +38,53 @@ void test_push(void)
TEST_ASSERT_NOT_NULL(&testNode);
TEST_ASSERT_NOT_NULL(testNode->next);
TEST_ASSERT_NULL(testNode->next->next);
TEST_ASSERT_EQUAL_INT(1, testNode->value);
TEST_ASSERT_EQUAL_INT(2, testNode->next->value);
temp = testNode->data;
TEST_ASSERT_EQUAL_INT(2, *temp);
testNode = testNode->next;
temp = testNode->data;
TEST_ASSERT_EQUAL_INT(1, *temp);
}
StackNode* setup(void *value, StackNode* next) {
StackNode* setup(void *data, StackNode* next) {
StackNode* node = malloc(sizeof(StackNode)); // allocate memory on heap
if (node == NULL) {
perror("malloc failed");
exit(EXIT_FAILURE); // or handle the error differently
}
node->value = value;
node->data = data;
node->next = next;
return node;
}
void test_pop(void) {
StackNode *stack = NULL;
int data1 = 10, data2 = 20;
void test_pop(void)
// Push elements to the stack
stack = push(stack, &data1);
stack = push(stack, &data2);
// Pop the top element
stack = pop(stack);
// Check if the top element is now the first pushed element
int *topData = top(stack);
TEST_ASSERT_EQUAL_INT(10, *topData); // After popping, the first element should be on top
// Pop the last element
stack = pop(stack);
// Check if the stack is empty now
TEST_ASSERT_NULL(stack); // Stack should be NULL now
}
void test_pop2(void)
{
StackNode* node2 = setup(3, NULL);
StackNode* node1 = setup(2, node2);
StackNode* header = setup(1, node1);
int x,y,z;
x = 1;
y = 2;
z = 3;
StackNode* node2 = setup(&z, NULL);
StackNode* node1 = setup(&y, node2);
StackNode* header = setup(&x, node1);
StackNode* temp;
temp = pop(header);
@ -56,21 +100,62 @@ void test_pop(void)
TEST_ASSERT_NULL(node1->next);
}
void test_top(void)
void test_top(void) {
StackNode *stack = NULL;
int data1 = 10, data2 = 20;
// Push elements to the stack
stack = push(stack, &data1);
stack = push(stack, &data2);
// Check the top element
int *topData = top(stack);
TEST_ASSERT_EQUAL_INT(20, *topData); // The top element should be 20 (last pushed)
// Pop the top element and check the new top
stack = pop(stack);
topData = top(stack);
TEST_ASSERT_EQUAL_INT(10, *topData); // Now the top element should be 10
}
void test_top2(void)
{
StackNode* node2 = setup(3, NULL);
StackNode* node1 = setup(2, node2);
StackNode* header = setup(1, node1);
int x,y,z;
x = 1;
y = 2;
z = 3;
StackNode* node2 = setup(&z, NULL);
StackNode* node1 = setup(&y, node2);
StackNode* header = setup(&x, node1);
int data = *(int *)top(header);
TEST_ASSERT_EQUAL_INT(node2->value, data);
TEST_ASSERT_EQUAL_INT(node2->data, data);
}
void test_clearStack(void) {
StackNode *stack = NULL;
int data1 = 10, data2 = 20;
// Push elements to the stack
stack = push(stack, &data1);
stack = push(stack, &data2);
// Clear the stack
clearStack(stack);
// The stack should be empty now
TEST_ASSERT_NULL(stack); // Stack should be NULL
}
void test_clear()
{
StackNode* node2 = setup(3, NULL);
StackNode* node1 = setup(2, node2);
StackNode* header = setup(1, node1);
int x,y,z;
x = 1;
y = 2;
z = 3;
StackNode* node2 = setup(&z, NULL);
StackNode* node1 = setup(&y, node2);
StackNode* header = setup(&x, node1);
StackNode* temp;
clearStack(header);
@ -106,7 +191,7 @@ int main()
RUN_TEST(test_push);
RUN_TEST(test_pop);
RUN_TEST(test_top);
RUN_TEST(test_clear);
RUN_TEST(test_clearStack);
return UNITY_END();
}