Merge branch 'simons_weg'

This commit is contained in:
Simon May 2025-12-22 13:37:34 +01:00
commit 8e4336ce97
14 changed files with 361 additions and 236 deletions

3
.gitignore vendored
View File

@ -6,3 +6,6 @@ runNumbersTest.exe
numbers.o
.vscode/launch.json
.vscode/settings.json
*.o
*.exe
runBintreeTest

View File

@ -1,7 +1,10 @@
#include <string.h>
#include <stdio.h>
#include "stack.h"
#include "bintree.h"
static StackNode *stack;
static TreeNode *tree = NULL;
// TODO: binären Suchbaum implementieren
/* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv),
* `clearTree`: gibt den gesamten Baum frei (rekursiv),
@ -12,8 +15,43 @@
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate)
{
if (root == NULL)
{
TreeNode *newNode = malloc(sizeof(TreeNode));
newNode->data = malloc(dataSize);
if (newNode->data == NULL)
{
return NULL; // Fehler
}
memcpy(newNode->data, data, dataSize);
newNode->left = NULL;
newNode->right = NULL;
return newNode;
}
int cmp = compareFct(root->data, data);
if (cmp < 0)
{
root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate);
}
else if (cmp > 0)
{
root->right = addToTree(root->right, data, dataSize, compareFct, isDuplicate);
}
else
{
if (isDuplicate != NULL)
{
*isDuplicate = 1;
return root;
}
else
{
root->left = addToTree(root->left, data, dataSize, compareFct, isDuplicate);
}
}
return root;
}
// Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction.
@ -21,7 +59,19 @@ TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFc
// push the top node and push all its left nodes.
void *nextTreeData(TreeNode *root)
{
if (root != NULL)
{
clearStack(stack);
buildStack(root);
}
if(stack != NULL)
{
void* data = top(stack);
stack = pop(stack);
return data;
}
return NULL;
}
// Releases all memory resources (including data copies).
@ -31,32 +81,34 @@ void clearTree(TreeNode *root)
{
return;
}
if (root->left != NULL)
{
clearTree(root->left);
free(root->left);
root->left = NULL;
}
else if (root->right != NULL)
if (root->right != NULL)
{
clearTree(root->right);
free(root->right);
root->right = NULL;
}
root->data = NULL;
root = NULL;
}
// Returns the number of entries in the tree given by root.
unsigned int treeSize(const TreeNode *root)
{
int counterL, counterR = 0;
if (root->left != NULL)
{
counterL = treeSize(root->left) + 1;
}
else if (root->right != NULL)
{
counterR = treeSize(root->right) + 1;
}
return root == NULL ? 0 : treeSize(root->left) + treeSize(root->right) + 1;
}
return counterL + counterR;
void buildStack(TreeNode *root)
{
if (root == NULL)
{
return;
}
buildStack(root->left);
stack = push(stack, root->data);
buildStack(root->right);
}

View File

@ -24,4 +24,6 @@ void clearTree(TreeNode *root);
// Returns the number of entries in the tree given by root.
unsigned int treeSize(const TreeNode *root);
void buildStack(TreeNode *root);
#endif

View File

@ -79,6 +79,8 @@ int addHighscore(const char *name, double timeInSeconds, unsigned int len)
{
HighscoreEntry entry = createHighscoreEntry(name, calculateScore(timeInSeconds, len));
highscoreTree = addToTree(highscoreTree, &entry, sizeof(entry), compareHighscoreEntries, NULL);
//HighscoreEntry *temp = highscoreTree->data;
//printf("%s%d\n", temp->name, temp->score);
return entry.score;
}

View File

@ -1 +1,5 @@
player1;3999
nick;9963
nick;9946
simon;4965
alex;2996
simon;2996

View File

@ -35,14 +35,20 @@ $(program_obj_filesobj_files): %.o: %.c
# --------------------------
# Unit Tests
# --------------------------
unitTests: stack.o test_stack.c $(unityfolder)/unity.c
stackTests: stack.o test_stack.c $(unityfolder)/unity.c
$(CC) $(FLAGS) -I$(unityfolder) -o runStackTest test_stack.c stack.o $(unityfolder)/unity.c
# --------------------------
# numbers.c Tests
# --------------------------
numbersTests: numbers.o test_numbers.c $(unityfolder)/unity.c
$(CC) $(FLAGS) -I$(unityfolder) -o runNumbersTest test_numbers.c numbers.o $(unityfolder)/unity.c
numbersTests: numbers.o bintree.o stack.o test_numbers.c $(unityfolder)/unity.c
$(CC) $(FLAGS) -I$(unityfolder) -o runNumbersTest test_numbers.c numbers.o bintree.o stack.o $(unityfolder)/unity.c
# --------------------------
# bintree.c Tests
# --------------------------
bintreeTests: bintree.o stack.o test_bintree.c $(unityfolder)/unity.c
$(CC) $(FLAGS) -I$(unityfolder) -o runBintreeTest test_bintree.c bintree.o stack.o $(unityfolder)/unity.c
# --------------------------
# Clean

177
numbers.c
View File

@ -14,150 +14,97 @@
// Returns len random numbers between 1 and 2x len in random order which are all different, except for two entries.
// Returns NULL on errors. Use your implementation of the binary search tree to check for possible duplicates while
// creating random numbers.
unsigned int checkArray(unsigned int *array, unsigned int len, unsigned int number)
void duplicateNumber(unsigned int *numbers, unsigned int len)
{
int free = 1;
if (!numbers || len < 2)
return;
for (int i = 0; i < len; i++)
{
if (array[i] == number)
{
free = 0;
}
}
unsigned int numberPicked = rand() % len; // take random spot in array
unsigned int destination = rand() % len; // new spot for duplicated number
return free;
while (destination == numberPicked) // while same spot get a new one
destination = rand() % len;
numbers[destination] = numbers[numberPicked];
}
/* for qsort
-1 num1 should come before num2
0 num1 and num2 are equal
1 num1 should come after num2
*/
int compare(const void *num1, const void *num2)
{
unsigned int temp1 = *(const unsigned int *)num1;
unsigned int temp2 = *(const unsigned int *)num2;
return (temp1 > temp2) - (temp1 < temp2);
}
unsigned int *createNumbers(unsigned int len)
{
srand(time(NULL));
unsigned int *array = (unsigned int*)malloc(len * sizeof(unsigned int));
int randomNr, counter;
if (len < 2)
{
return NULL;
}
srand((unsigned)time(NULL));
if(array == NULL)
TreeNode *root = NULL;
unsigned int i = 0;
unsigned int *numbers = malloc(sizeof(unsigned int) * len);
if (!numbers)
{
return NULL;
}
for (int i = 0; i < len; i++)
while (i < len)
{
counter = 0;
do
unsigned int random = (rand() % (2 * len)) + 1;
int duplicate = 0;
root = addToTree(root, &random, sizeof(unsigned int), compare, &duplicate);
if (!root)
{
if (counter == 9)
{
return NULL;
}
randomNr = rand() % (2 * len + 1);
counter++;
} while (!checkArray(array, i, randomNr));
array[i] = randomNr;
printf("%u ", array[i]);
}
printf("\n");
return array;
}
void merge(unsigned int arr[], unsigned int left, unsigned int mid, unsigned int right)
{
unsigned int i, j, k;
unsigned int n1 = mid - left + 1;
unsigned int n2 = right - mid;
// Create temporary arrays
unsigned int leftArr[n1], rightArr[n2];
// Copy data to temporary arrays
for (i = 0; i < n1; i++)
leftArr[i] = arr[left + i];
for (j = 0; j < n2; j++)
rightArr[j] = arr[mid + 1 + j];
// Merge the temporary arrays back into arr[left..right]
i = 0;
j = 0;
k = left;
while (i < n1 && j < n2)
{
if (leftArr[i] <= rightArr[j])
{
arr[k] = leftArr[i];
i++;
free(numbers); // malloc-Fehler
return NULL;
}
else
{
arr[k] = rightArr[j];
j++;
}
k++;
if (!duplicate)
numbers[i++] = random;
}
// Copy the remaining elements of leftArr[], if any
while (i < n1)
{
arr[k] = leftArr[i];
i++;
k++;
}
// Copy the remaining elements of rightArr[], if any
while (j < n2)
{
arr[k] = rightArr[j];
j++;
k++;
}
duplicateNumber(numbers, len);
clearTree(root);
return numbers;
}
void mergeSort(unsigned int arr[], unsigned int left, unsigned int right)
{
if (left < right)
{
// Calculate the midpoint
unsigned int mid = left + (right - left) / 2;
// Sort first and second halves
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
// Merge the sorted halves
merge(arr, left, mid, right);
}
}
// Returns only the only number in numbers which is present twice. Returns zero on errors.
// Returns the only number in numbers which is present twice. Returns zero on errors.
unsigned int getDuplicate(const unsigned int numbers[], unsigned int len)
{
unsigned int temp[len];
unsigned int duplicate = 0;
/*if(numbers == NULL || (sizeof(numbers) / sizeof(typeof(numbers)) != len))
if (!numbers || len < 2)
{
return 0;S
}*/
for (int i = 0; i < len; i++)
{
temp[i] = numbers[i];
return 0;
}
// Sorting arr using mergesort
mergeSort(temp, 0, len - 1);
for (int i = 0; i < len - 1; i++)
unsigned int *copy = (unsigned int *)malloc(len * sizeof(unsigned int));
if (!copy)
{
duplicate = temp[i];
if (duplicate == temp[i + 1])
return 0;
}
memcpy(copy, numbers, len * sizeof(unsigned int));
qsort(copy, len, sizeof(unsigned int), compare);
unsigned int duplicate = 0;
for (unsigned int i = 1; i < len; i++)
{
if (copy[i] == copy[i - 1])
{
duplicate = copy[i];
break;
}
}
free(copy);
return duplicate;
}

BIN
numbers.o

Binary file not shown.

Binary file not shown.

62
stack.c
View File

@ -10,46 +10,24 @@
// Pushes data as pointer onto the stack.
StackNode *push(StackNode *stack, void *data)
{
StackNode *tempNode, *newNode;
newNode = malloc(sizeof(StackNode));
newNode->value = *(int *)data;
newNode->next = NULL;
if (stack == NULL)
{
stack = newNode;
return stack;
}
tempNode = stack;
while (tempNode->next != NULL)
{
tempNode = tempNode->next;
}
tempNode->next = newNode;
return stack;
StackNode *newNode = malloc(sizeof(StackNode));
newNode->data = data;
newNode->next = stack; // Set the new node's next pointer to the current top of the stack.
return newNode; // Return the new node as the top of the stack.
}
// Deletes the top element of the stack (latest added element) and releases its memory. (Pointer to data has to be
// freed by caller.)
StackNode *pop(StackNode *stack)
{
StackNode *tempNode;
if (stack == NULL)
{
return stack;
return NULL; // Nothing to pop if stack is empty.
}
tempNode = stack;
while (tempNode->next->next != NULL)
{
tempNode = tempNode->next;
}
free(tempNode->next);
tempNode->next = NULL;
StackNode *tempNode = stack;
stack = stack->next; // Move the stack pointer to the next node.
free(tempNode); // Free the old top node.
return stack;
}
@ -57,35 +35,19 @@ StackNode *pop(StackNode *stack)
// Returns the data of the top element.
void *top(StackNode *stack)
{
StackNode *tempNode;
if (stack == NULL)
{
return NULL;
return NULL; // Return NULL if stack is empty.
}
tempNode = stack;
while (tempNode->next != NULL)
{
tempNode = tempNode->next;
}
return &tempNode->value;
return stack->data; // Return the value of the top node.
}
// Clears stack and releases all memory.
void clearStack(StackNode *stack)
{
StackNode *tempNode;
if (stack == NULL)
while (stack != NULL)
{
return;
}
tempNode = stack;
while (tempNode != NULL)
{
tempNode = pop(tempNode);
stack = pop(stack); // Pop each element and free memory.
}
}

View File

@ -9,7 +9,7 @@ The latest element is taken from the stack. */
//TODO: passenden Datentyp als struct anlegen
typedef struct Node {
int value;
void *data;
struct Node* next;
} StackNode;

80
test_bintree.c Normal file
View File

@ -0,0 +1,80 @@
#include <stdio.h>
#include <stdlib.h>
#include "bintree.h"
#include "unity.h"
void sizeTest()
{
TreeNode *root = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node1 = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node2 = (TreeNode *)malloc(sizeof(TreeNode));
int dataRoot = 2;
int dataNode1 = 1;
int dataNode2 = 3;
root->data = &dataRoot;
root->left = (TreeNode *)node1;
root->right = (TreeNode *)node2;
node1->data = &dataNode1;
node1->left = NULL;
node1->right = NULL;
node2->data = &dataNode2;
node2->left = NULL;
node2->right = NULL;
TEST_ASSERT_EQUAL_INT(3,treeSize(root));
}
void clearTest()
{
TreeNode *root = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node1 = (TreeNode *)malloc(sizeof(TreeNode));
TreeNode *node2 = (TreeNode *)malloc(sizeof(TreeNode));
int dataRoot = 2;
int dataNode1 = 1;
int dataNode2 = 3;
root->data = &dataRoot;
root->left = (TreeNode *)node1;
root->right = (TreeNode *)node2;
node1->data = &dataNode1;
node1->left = NULL;
node1->right = NULL;
node2->data = &dataNode2;
node2->left = NULL;
node2->right = NULL;
clearTree(root);
root = NULL;
TEST_ASSERT_EQUAL_INT(0,treeSize(root));
}
void setUp(void)
{
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
}
void tearDown(void)
{
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
}
int main()
{
UNITY_BEGIN();
printf("============================\nNumbers tests\n============================\n");
RUN_TEST(sizeTest);
RUN_TEST(clearTest);
return UNITY_END();
}

View File

@ -3,26 +3,47 @@
#include "numbers.h"
#include "unity.h"
void createNumbersTest()
void test_createNumbers()
{
unsigned int *array;
unsigned int len = 6;
array = createNumbers(len);
for (int i = 0; i < len; i++)
{
printf("%u ", array[i]);
}
printf("\n");
unsigned int *array = createNumbers(len);
TEST_ASSERT_NOT_NULL(array);
unsigned int duplicate = getDuplicate(array, len);
TEST_ASSERT_NOT_EQUAL(0, duplicate);
int counter = 0;
for (unsigned int i = 0; i < len; i++)
{
if (array[i] == duplicate)
counter++;
}
TEST_ASSERT_EQUAL(2, counter);
free(array);
}
void duplicateTest()
void test_createNumbers_values()
{
unsigned int array[6] = {1, 4, 5, 2, 3, 1};
unsigned int len = 6;
unsigned int *array = createNumbers(len);
TEST_ASSERT_NOT_NULL(array);
TEST_ASSERT_EQUAL_INT(1, getDuplicate(array, len));
for (unsigned int i = 0; i < len; i++)
{
TEST_ASSERT_TRUE(array[i] >= 1);
TEST_ASSERT_TRUE(array[i] <= 2 * len);
}
free(array);
}
void test_getDuplicate()
{
unsigned int array[6] = {1, 2, 4, 4, 6, 7};
unsigned int duplicate = getDuplicate(array, 6);
TEST_ASSERT_EQUAL_UINT(4, duplicate);
}
void setUp(void)
@ -35,13 +56,15 @@ void tearDown(void)
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
}
int main()
int main()
{
UNITY_BEGIN();
printf("============================\nNumbers tests\n============================\n");
RUN_TEST(createNumbersTest);
RUN_TEST(duplicateTest);
printf("\n============================\n Numbers tests\n============================\n");
RUN_TEST(test_createNumbers);
RUN_TEST(test_createNumbers_values);
RUN_TEST(test_getDuplicate);
return UNITY_END();
}

View File

@ -3,16 +3,33 @@
#include "stack.h"
#include "unity.h"
void test_push(void)
void test_push(void) {
StackNode *stack = NULL;
int data1 = 10, data2 = 20;
// Push elements to the stack
stack = push(stack, &data1);
stack = push(stack, &data2);
// Check if the stack is not empty
TEST_ASSERT_NOT_NULL(stack);
// Check if the top element is correct
int *topData = top(stack);
TEST_ASSERT_EQUAL_INT(20, *topData); // The last pushed element should be on top
}
void test_push1(void)
{
StackNode *testNode;
StackNode *testNode = NULL;
int data = 1;
// Test für leeren Stack
testNode = push(NULL, &data);
testNode = push(testNode, &data);
TEST_ASSERT_NOT_NULL(&testNode);
TEST_ASSERT_NULL(testNode->next);
TEST_ASSERT_EQUAL_INT(1, testNode->value);
int *temp = testNode->data;
TEST_ASSERT_EQUAL_INT(1, *temp);
data = 2;
@ -21,26 +38,53 @@ void test_push(void)
TEST_ASSERT_NOT_NULL(&testNode);
TEST_ASSERT_NOT_NULL(testNode->next);
TEST_ASSERT_NULL(testNode->next->next);
TEST_ASSERT_EQUAL_INT(1, testNode->value);
TEST_ASSERT_EQUAL_INT(2, testNode->next->value);
temp = testNode->data;
TEST_ASSERT_EQUAL_INT(2, *temp);
testNode = testNode->next;
temp = testNode->data;
TEST_ASSERT_EQUAL_INT(1, *temp);
}
StackNode* setup(int value, StackNode* next) {
StackNode* setup(void *data, StackNode* next) {
StackNode* node = malloc(sizeof(StackNode)); // allocate memory on heap
if (node == NULL) {
perror("malloc failed");
exit(EXIT_FAILURE); // or handle the error differently
}
node->value = value;
node->data = data;
node->next = next;
return node;
}
void test_pop(void) {
StackNode *stack = NULL;
int data1 = 10, data2 = 20;
void test_pop(void)
// Push elements to the stack
stack = push(stack, &data1);
stack = push(stack, &data2);
// Pop the top element
stack = pop(stack);
// Check if the top element is now the first pushed element
int *topData = top(stack);
TEST_ASSERT_EQUAL_INT(10, *topData); // After popping, the first element should be on top
// Pop the last element
stack = pop(stack);
// Check if the stack is empty now
TEST_ASSERT_NULL(stack); // Stack should be NULL now
}
void test_pop2(void)
{
StackNode* node2 = setup(3, NULL);
StackNode* node1 = setup(2, node2);
StackNode* header = setup(1, node1);
int x,y,z;
x = 1;
y = 2;
z = 3;
StackNode* node2 = setup(&z, NULL);
StackNode* node1 = setup(&y, node2);
StackNode* header = setup(&x, node1);
StackNode* temp;
temp = pop(header);
@ -56,35 +100,36 @@ void test_pop(void)
TEST_ASSERT_NULL(node1->next);
}
void test_top(void)
{
StackNode* node2 = setup(3, NULL);
StackNode* node1 = setup(2, node2);
StackNode* header = setup(1, node1);
void test_top(void) {
StackNode *stack = NULL;
int data1 = 10, data2 = 20;
int data = *(int *)top(header);
TEST_ASSERT_EQUAL_INT(node2->value, data);
// Push elements to the stack
stack = push(stack, &data1);
stack = push(stack, &data2);
// Check the top element
int *topData = top(stack);
TEST_ASSERT_EQUAL_INT(20, *topData); // The top element should be 20 (last pushed)
// Pop the top element and check the new top
stack = pop(stack);
topData = top(stack);
TEST_ASSERT_EQUAL_INT(10, *topData); // Now the top element should be 10
}
void test_clear()
void test_top2(void)
{
StackNode* node2 = setup(3, NULL);
StackNode* node1 = setup(2, node2);
StackNode* header = setup(1, node1);
StackNode* temp;
clearStack(header);
temp = header;
int after = 0;
while(temp)
{
after++;
temp = temp->next;
}
int x,y,z;
x = 1;
y = 2;
z = 3;
StackNode* node2 = setup(&z, NULL);
StackNode* node1 = setup(&y, node2);
StackNode* header = setup(&x, node1);
TEST_ASSERT_NULL(after);
int data = *(int *)top(header);
TEST_ASSERT_EQUAL_INT(node2->data, data);
}
void setUp(void)
@ -106,7 +151,6 @@ int main()
RUN_TEST(test_push);
RUN_TEST(test_pop);
RUN_TEST(test_top);
RUN_TEST(test_clear);
return UNITY_END();
}