Compare commits

..

No commits in common. "temp" and "main" have entirely different histories.
temp ... main

10 changed files with 86 additions and 581 deletions

11
.gitignore vendored
View File

@ -1,11 +0,0 @@
doble_initial.exe
highscores.txt
runStackTest.exe
stack.o
runNumbersTest.exe
numbers.o
.vscode/launch.json
.vscode/settings.json
*.o
*.exe
runBintreeTest

View File

@ -2,7 +2,7 @@
#include "stack.h"
#include "bintree.h"
// TODO: binären Suchbaum implementieren
//TODO: binären Suchbaum implementieren
/* * `addToTree`: fügt ein neues Element in den Baum ein (rekursiv),
* `clearTree`: gibt den gesamten Baum frei (rekursiv),
* `treeSize`: zählt die Knoten im Baum (rekursiv),
@ -12,26 +12,7 @@
// if isDuplicate is NULL, otherwise ignores duplicates and sets isDuplicate to 1 (or to 0 if a new entry is added).
TreeNode *addToTree(TreeNode *root, const void *data, size_t dataSize, CompareFctType compareFct, int *isDuplicate)
{
TreeNode newNode = {data, NULL, NULL};
if(root == NULL)
{
return &newNode;
}
if (data < root->data)
{
root->left = addToTree(root->left, data, dataSize,compareFct, isDuplicate);
}
else if(data > root->data)
{
root->right = addToTree(root->right, data, dataSize,compareFct, isDuplicate);
}
return root;
}
// Iterates over the tree given by root. Follows the usage of strtok. If tree is NULL, the next entry of the last tree given is returned in ordering direction.
@ -45,36 +26,11 @@ void *nextTreeData(TreeNode *root)
// Releases all memory resources (including data copies).
void clearTree(TreeNode *root)
{
if (root == NULL)
{
return;
}
if (root->left != NULL)
{
clearTree(root->left);
free(root->left);
}
else if (root->right != NULL)
{
clearTree(root->right);
free(root->right);
}
root->data = NULL;
}
// Returns the number of entries in the tree given by root.
unsigned int treeSize(const TreeNode *root)
{
int counterL, counterR = 0;
if (root->left != NULL)
{
counterL = treeSize(root->left) + 1;
}
else if (root->right != NULL)
{
counterR = treeSize(root->right) + 1;
}
return counterL + counterR;
}

View File

@ -35,20 +35,8 @@ $(program_obj_filesobj_files): %.o: %.c
# --------------------------
# Unit Tests
# --------------------------
unitTests: stack.o test_stack.c $(unityfolder)/unity.c
$(CC) $(FLAGS) -I$(unityfolder) -o runStackTest test_stack.c stack.o $(unityfolder)/unity.c
# --------------------------
# numbers.c Tests
# --------------------------
numbersTests: numbers.o test_numbers.c $(unityfolder)/unity.c
$(CC) $(FLAGS) -I$(unityfolder) -o runNumbersTest test_numbers.c numbers.o $(unityfolder)/unity.c
# --------------------------
# bintree.c Tests
# --------------------------
bintreeTests: bintree.o test_bintree.c $(unityfolder)/unity.c
$(CC) $(FLAGS) -I$(unityfolder) -o runBintreeTest test_bintree.c bintree.o $(unityfolder)/unity.c
unitTests:
echo "needs to be implemented"
# --------------------------
# Clean

139
numbers.c
View File

@ -5,7 +5,7 @@
#include "numbers.h"
#include "bintree.h"
// TODO: getDuplicate und createNumbers implementieren
//TODO: getDuplicate und createNumbers implementieren
/* * * Erzeugen eines Arrays mit der vom Nutzer eingegebenen Anzahl an Zufallszahlen.
* Sicherstellen, dass beim Befüllen keine Duplikate entstehen.
* Duplizieren eines zufälligen Eintrags im Array.
@ -14,150 +14,13 @@
// Returns len random numbers between 1 and 2x len in random order which are all different, except for two entries.
// Returns NULL on errors. Use your implementation of the binary search tree to check for possible duplicates while
// creating random numbers.
unsigned int checkArray(unsigned int *array, unsigned int len, unsigned int number)
{
int free = 1;
for (int i = 0; i < len; i++)
{
if (array[i] == number)
{
free = 0;
}
}
return free;
}
unsigned int *createNumbers(unsigned int len)
{
srand(time(NULL));
unsigned int *array = (unsigned int*)malloc(len * sizeof(unsigned int));
int randomNr, counter;
if(array == NULL)
{
return NULL;
}
for (int i = 0; i < len; i++)
{
counter = 0;
do
{
if (counter == 9)
{
return NULL;
}
randomNr = rand() % (2 * len + 1);
counter++;
} while (!checkArray(array, i, randomNr));
array[i] = randomNr;
printf("%u ", array[i]);
}
printf("\n");
return array;
}
void merge(unsigned int arr[], unsigned int left, unsigned int mid, unsigned int right)
{
unsigned int i, j, k;
unsigned int n1 = mid - left + 1;
unsigned int n2 = right - mid;
// Create temporary arrays
unsigned int leftArr[n1], rightArr[n2];
// Copy data to temporary arrays
for (i = 0; i < n1; i++)
leftArr[i] = arr[left + i];
for (j = 0; j < n2; j++)
rightArr[j] = arr[mid + 1 + j];
// Merge the temporary arrays back into arr[left..right]
i = 0;
j = 0;
k = left;
while (i < n1 && j < n2)
{
if (leftArr[i] <= rightArr[j])
{
arr[k] = leftArr[i];
i++;
}
else
{
arr[k] = rightArr[j];
j++;
}
k++;
}
// Copy the remaining elements of leftArr[], if any
while (i < n1)
{
arr[k] = leftArr[i];
i++;
k++;
}
// Copy the remaining elements of rightArr[], if any
while (j < n2)
{
arr[k] = rightArr[j];
j++;
k++;
}
}
void mergeSort(unsigned int arr[], unsigned int left, unsigned int right)
{
if (left < right)
{
// Calculate the midpoint
unsigned int mid = left + (right - left) / 2;
// Sort first and second halves
mergeSort(arr, left, mid);
mergeSort(arr, mid + 1, right);
// Merge the sorted halves
merge(arr, left, mid, right);
}
}
// Returns only the only number in numbers which is present twice. Returns zero on errors.
unsigned int getDuplicate(const unsigned int numbers[], unsigned int len)
{
unsigned int temp[len];
unsigned int duplicate = 0;
/*if(numbers == NULL || (sizeof(numbers) / sizeof(typeof(numbers)) != len))
{
return 0;S
}*/
for (int i = 0; i < len; i++)
{
temp[i] = numbers[i];
}
// Sorting arr using mergesort
mergeSort(temp, 0, len - 1);
for (int i = 0; i < len - 1; i++)
{
duplicate = temp[i];
if (duplicate == temp[i + 1])
{
break;
}
}
return duplicate;
}

60
stack.c
View File

@ -1,7 +1,7 @@
#include <stdlib.h>
#include "stack.h"
// TODO: grundlegende Stackfunktionen implementieren:
//TODO: grundlegende Stackfunktionen implementieren:
/* * `push`: legt ein Element oben auf den Stack,
* `pop`: entfernt das oberste Element,
* `top`: liefert das oberste Element zurück,
@ -10,82 +10,24 @@
// Pushes data as pointer onto the stack.
StackNode *push(StackNode *stack, void *data)
{
StackNode *tempNode, *newNode;
newNode = malloc(sizeof(StackNode));
newNode->value = *(int *)data;
newNode->next = NULL;
if (stack == NULL)
{
stack = newNode;
return stack;
}
tempNode = stack;
while (tempNode->next != NULL)
{
tempNode = tempNode->next;
}
tempNode->next = newNode;
return stack;
}
// Deletes the top element of the stack (latest added element) and releases its memory. (Pointer to data has to be
// freed by caller.)
StackNode *pop(StackNode *stack)
{
StackNode *tempNode;
if (stack == NULL)
{
return stack;
}
tempNode = stack;
while (tempNode->next->next != NULL)
{
tempNode = tempNode->next;
}
free(tempNode->next);
tempNode->next = NULL;
return stack;
}
// Returns the data of the top element.
void *top(StackNode *stack)
{
StackNode *tempNode;
if (stack == NULL)
{
return NULL;
}
tempNode = stack;
while (tempNode->next != NULL)
{
tempNode = tempNode->next;
}
return &tempNode->value;
}
// Clears stack and releases all memory.
void clearStack(StackNode *stack)
{
StackNode *tempNode;
if (stack == NULL)
{
return;
}
tempNode = stack;
while (tempNode != NULL)
{
tempNode = pop(tempNode);
}
}

View File

@ -8,10 +8,6 @@ The latest element is taken from the stack. */
#include <stdlib.h>
//TODO: passenden Datentyp als struct anlegen
typedef struct Node {
int value;
struct Node* next;
} StackNode;
// Pushes data as pointer onto the stack.
StackNode *push(StackNode *stack, void *data);

View File

@ -1,60 +0,0 @@
#include <stdio.h>
#include <stdlib.h>
#include "bintree.h"
#include "unity.h"
void treeTest()
{
TreeNode root;
TreeNode node1;
TreeNode node2;
int dataRoot = 2;
int dataNode1 = 1;
int dataNode2 = 3;
root.data = &dataRoot;
root.left = &node1;
root.right = &node2;
node1.data = &dataNode1;
node1.left = NULL;
node1.right = NULL;
node2.data = &dataNode2;
node2.left = NULL;
node2.right = NULL;
TEST_ASSERT_EQUAL_INT(3,treeSize(&root));
clearTree(&root);
TEST_ASSERT_EQUAL_INT(0,treeSize(&root));
}
void setUp(void)
{
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
}
void tearDown(void)
{
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
}
int main()
{
UNITY_BEGIN();
printf("============================\nNumbers tests\n============================\n");
RUN_TEST(treeTest);
return UNITY_END();
}

View File

@ -1,47 +0,0 @@
#include <stdio.h>
#include <stdlib.h>
#include "numbers.h"
#include "unity.h"
void createNumbersTest()
{
unsigned int *array;
unsigned int len = 6;
array = createNumbers(len);
for (int i = 0; i < len; i++)
{
printf("%u ", array[i]);
}
printf("\n");
TEST_ASSERT_NOT_NULL(array);
}
void duplicateTest()
{
unsigned int array[6] = {1, 4, 5, 2, 3, 1};
unsigned int len = 6;
TEST_ASSERT_EQUAL_INT(1, getDuplicate(array, len));
}
void setUp(void)
{
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
}
void tearDown(void)
{
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
}
int main()
{
UNITY_BEGIN();
printf("============================\nNumbers tests\n============================\n");
RUN_TEST(createNumbersTest);
RUN_TEST(duplicateTest);
return UNITY_END();
}

View File

@ -1,112 +0,0 @@
#include <stdio.h>
#include <stdlib.h>
#include "stack.h"
#include "unity.h"
void test_push(void)
{
StackNode *testNode;
int data = 1;
// Test für leeren Stack
testNode = push(NULL, &data);
TEST_ASSERT_NOT_NULL(&testNode);
TEST_ASSERT_NULL(testNode->next);
TEST_ASSERT_EQUAL_INT(1, testNode->value);
data = 2;
// Test für nicht leeren Stack
testNode = push(testNode, &data);
TEST_ASSERT_NOT_NULL(&testNode);
TEST_ASSERT_NOT_NULL(testNode->next);
TEST_ASSERT_NULL(testNode->next->next);
TEST_ASSERT_EQUAL_INT(1, testNode->value);
TEST_ASSERT_EQUAL_INT(2, testNode->next->value);
}
StackNode* setup(int value, StackNode* next) {
StackNode* node = malloc(sizeof(StackNode)); // allocate memory on heap
if (node == NULL) {
perror("malloc failed");
exit(EXIT_FAILURE); // or handle the error differently
}
node->value = value;
node->next = next;
return node;
}
void test_pop(void)
{
StackNode* node2 = setup(3, NULL);
StackNode* node1 = setup(2, node2);
StackNode* header = setup(1, node1);
StackNode* temp;
temp = pop(header);
int after = 0;
while(temp)
{
after++;
temp = temp->next;
}
TEST_ASSERT_EQUAL_INT(2, after);
TEST_ASSERT_NULL(node1->next);
}
void test_top(void)
{
StackNode* node2 = setup(3, NULL);
StackNode* node1 = setup(2, node2);
StackNode* header = setup(1, node1);
int data = *(int *)top(header);
TEST_ASSERT_EQUAL_INT(node2->value, data);
}
void test_clear()
{
StackNode* node2 = setup(3, NULL);
StackNode* node1 = setup(2, node2);
StackNode* header = setup(1, node1);
StackNode* temp;
clearStack(header);
temp = header;
int after = 0;
while(temp)
{
after++;
temp = temp->next;
}
TEST_ASSERT_NULL(after);
}
void setUp(void)
{
// Falls notwendig, kann hier Vorbereitungsarbeit gemacht werden
}
void tearDown(void)
{
// Hier kann Bereinigungsarbeit nach jedem Test durchgeführt werden
}
int main()
{
UNITY_BEGIN();
printf("============================\nStack tests\n============================\n");
RUN_TEST(test_push);
RUN_TEST(test_pop);
RUN_TEST(test_top);
RUN_TEST(test_clear);
return UNITY_END();
}

View File

@ -1,10 +0,0 @@
#ifndef UNITTTESTS_H
#define UNITTTESTS_H
#include <stdio.h>
typedef int (*UnitTestType)(void);
#define RUN_UNIT_TEST(fct) printf("%80s: %d\n", #fct, fct())
#endif